专题:土壤生态学

植物-土壤反馈理论及其在连作障碍管理中的应用

  • 周新刚 ,
  • 马海鲲 ,
  • 郭辉 ,
  • 韦中 ,
  • 徐阳春 ,
  • 吴凤芝 ,
  • 沈其荣
展开
  • 1. 东北农业大学园艺园林学院, 哈尔滨 150030;
    2. 南开大学生命科学学院, 天津 300071;
    3. 南京农业大学资源与环境科学学院, 国家有机类肥料工程技术研究中心, 江苏省固体有机废弃物资源化 高技术研究重点实验室, 江苏省有机固体废弃物资源化协同创新中心, 南京 210095
周新刚,研究员,研究方向为设施蔬菜生理生态,电子信箱:xgzhou@neau.edu.cn

收稿日期: 2021-07-05

  修回日期: 2021-12-03

  网络出版日期: 2022-03-25

Plant-soil feedback: A key theory for management of soil sickness

  • ZHOU Xingang ,
  • MA Haikun ,
  • GUO Hui ,
  • WEI Zhong ,
  • XU Yangchun ,
  • WU Fengzhi ,
  • SHEN Qirong
Expand
  • 1. Department of Horticulture, Northeast Agricultural University, Harbin 150030, China;
    2. College of Life Science, Nankai University, Tianjin 300071, China;
    3. College of Resources and Environmental Science, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Nanjing 210095, China

Received date: 2021-07-05

  Revised date: 2021-12-03

  Online published: 2022-03-25

摘要

作为植物-土壤负反馈的典型现象,作物连作障碍严重制约了农业的可持续发展。概述了植物-土壤反馈理论的发展过程和作用原理,以连作障碍为例总结了该理论在农业生产中应用和发展现状,建议参照自然生态系统中的植物-土壤反馈作用理论,进一步解析农田植物多样性提高作物健康和产量的机制。通过构建多样性种植模式、发展强化根际微生物组功能等手段来促进农田中的正反馈作用,缓解或消除作物连作障碍因子,增强土壤-植物系统健康,促进农业可持续发展。

本文引用格式

周新刚 , 马海鲲 , 郭辉 , 韦中 , 徐阳春 , 吴凤芝 , 沈其荣 . 植物-土壤反馈理论及其在连作障碍管理中的应用[J]. 科技导报, 2022 , 40(3) : 32 -40 . DOI: 10.3981/j.issn.1000-7857.2022.03.003

Abstract

Being a typical negative plant-soil feedback effect,soil sickness severely constrains the sustainable development of agriculture.This article reviews the brief history and main mechanism of plant-soil feedback and the relationship between plantsoil feedback and agricultural production.We propose that more efforts should be made to elucidate the mechanism for plant diversity to enhance crop health and increse yield by referring to the mechanisms of plant-soil feedback in natural ecosystems.Moreover,positive feedback in agricultural fields can be promoted by designing diversified cropping systems and enhancing the functioning of rhizosphere microbiota,so as to enhance crop health,alleviate soil sickness and promote sustainable agriculture.

参考文献

[1] Bever J D, Platt T G, Morton E R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66:265-283.
[2] Kleijn D, Bommarco R, Fijen T P M, et al. Ecological intensification:Bridging the gap between science and practice[J]. Trends in Ecology & Evolution, 2019, 34(2):154-166.
[3] 韦中,沈宗专,杨天杰,等.从抑病土壤到根际免疫:概念提出与发展思考[J].土壤学报, 2021, 58(4):814-824.
[4] van der Putten W H, Bardgett R D, Bever J D, et al. Plant-soil feedbacks:The past, the present and future challenges[J]. Journal of Ecology, 2013, 101(2):265-276.
[5] 喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报, 2000, 31(1):124-126.
[6] Huang L, Song L, Xia X, et al. Plant-soil feedbacks and soil sickness:From mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013, 39(2):232-242.
[7] Cesarano G, Zotti M, Antignani V, et al. Soil sickness and negative plant-soil feedback:A reappraisal of hypotheses[J]. Journal of Plant Pathology, 2017, 99(3):545-570.
[8] 张俊伶,张江周,申建波,等.土壤健康与农业绿色发展:机遇与对策[J].土壤学报, 2020, 57(4):783-796.
[9] 蔡祖聪,黄新琦.土壤学不应忽视对作物土传病原微生物的研究[J].土壤学报, 2016, 53(2):305-310.
[10] Patrick Z A. Phytotoxic substances associated with the decomposition in soil of plant residues[J]. Soil Science, 1971, 111(1):13-18.
[11] Bennett J A, Klironomos J. Mechanisms of plant-soil feedback:Interactions among biotic and abiotic drivers[J]. New Phytologist, 2019, 222(1):91-96.
[12] Inderjit, van der Putten W H. Impacts of soil microbial communities on exotic plant invasions[J]. Trends in Ecology & Evolution, 2010, 25(9):512-519.
[13] Bever J D, Westover K M, Antonovics J. Incorporating the soil community into plant population dynamics:The utility of the feedback approach[J]. Journal of Ecology, 1997, 85(5):561-573.
[14] Fujii K, Shibata M, Kitajima K, et al. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems[J]. Ecological Research, 2018, 33(1):149-160.
[15] Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits?[J]. New Phytologist, 2014, 204(2):408-423.
[16] Hobbie S E. Plant species effects on nutrient cycling:Revisiting litter feedbacks[J]. Trends in Ecology & Evolution, 2015, 30(6):357-363.
[17] Castle S C, Lekberg Y, Affleck D, et al. Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape[J]. Journal of Ecology, 2016, 104(6):1555-1565.
[18] Cortois R, Schroeder-Georgi T, Weigelt A, et al. Plantsoil feedbacks:Role of plant functional group and plant traits[J]. Journal of Ecology, 2016, 104(6):1608-1617.
[19] Revillini D, Gehring C A, Johnson N C. The role of locally adapted mycorrhizas and rhizobacteria in plantsoil feedback systems[J]. Functional Ecology, 2016, 30(7):1086-1098.
[20] Fitzpatrick C R, Copeland J, Wang P W, et al. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):1157-1165.
[21] Bennett J A, Maherali H, Reinhart K O, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics[J]. Science, 2017, 355(6321):181-184.
[22] Teste F P, Kardol P, Turner B L, et al. Plant-soil feedback and the maintenance of diversity in Mediterraneanclimate shrublands[J]. Science, 2017, 355(6321):173-176.
[23] Callaway R M, Ridenour W M. Novel weapons:Invasive success and the evolution of increased competitive ability[J]. Frontiers in Ecology and the Environment, 2004, 2(8):436-443.
[24] Singh H P, Batish D R, Kohli R K. Autotoxicity:Concept, organisms and ecological significance[J]. Critical Reviews in Plant Sciences, 1999, 18:757-772.
[25] Stinson K A, Campbell S A, Powell J R, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms[J]. PLoS Biology, 2006, 4(5):727-731.
[26] Zhou X, Zhang J, Pan D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions[J]. Biology and Fertility of Soils, 2018, 54(3):363-372.
[27] Jin X, Wu F, Zhou X. Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition[J]. Biology and Fertility of Soils, 2020, 56(1):125-136.
[28] Bezemer T M, Lawson C S, Hedlund K, et al. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands[J]. Journal of Ecology, 2006, 94(5):893-904.
[29] Ke P J, Miki T, Ding T S. The soil microbial community predicts the importance of plant traits in plant-soil feedback[J]. New Phytologist, 2015, 206(1):329-341.
[30] Gilbert G S, Webb C O. Phylogenetic signal in plant pathogen-host range[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12):4979-4983.
[31] Tedersoo L, Mett M, Ishida T A, et al. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis[J]. New Phytologist, 2013, 199(3):822-831.
[32] Sawers R J H, Ramirez-Flores M R, Olalde-Portugal V, et al. The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals:Insights from genetics and genomics[J]. New Phytologist, 2018, 220(4):1135-1140.
[33] Mariotte P, Mehrabi Z, Bezemer T M, et al. Plant-soil feedback:Bridging natural and agricultural sciences[J]. Trends in Ecology & Evolution, 2018, 33(2):129-142.
[34] Wei Z, Jousset A. Plant breeding goes microbial[J]. Trends in Plant Science, 2017, 22(7):555-558.
[35] Mazzoleni S, Bonanomi G, Incerti G, et al. Inhibitory and toxic effects of extracellular self-DNA in litter:A mechanism for negative plant-soil feedbacks[J]. New Phytologist, 2015, 205(3):1195-1210.
[36] Yu J Q, Matsui Y. Phytotoxic substances in the root exudates of Cucumis sativus L.[J]. Journal of Chemical Ecology, 1994, 20:21-31.
[37] Bennett A J, Bending G D, Chandler D, et al. Meeting the demand for crop production:The challenge of yield decline in crops grown in short rotations[J]. Biological Reviews, 2012, 87(1):52-71.
[38] Raaijmakers J M, Mazzola M. Soil immune responses:Soil microbiomes may be harnessed for plant health[J]. Science, 2016, 352(6292):1392-1393.
[39] Mendes R, Kruijt M, de Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033):1097-1100.
[40] Cha J Y, Han S, Hong H J, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil[J]. ISME Journal, 2016, 10(1):119-129.
[41] Berendsen R L, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME Journal, 2018, 12(6):1496-1507.
[42] Nie L, Peng S, Bouman B A, et al. Alleviating soil sickness caused by aerobic monocropping:Responses of aerobic rice to various nitrogen sources[J]. Soil Science and Plant Nutrition, 2009, 55:150-159.
[43] Nie L X, Peng S B, Bouman B A M, et al. Alleviating soil sickness caused by aerobic monocropping:Responses of aerobic rice to nutrient supply[J]. Field Crops Research, 2008, 107(2):129-136.
[44] Bonanomi G, De Filippis F, Zotti M, et al. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield[J]. Applied Soil Ecology, 2020, 156:103714.
[45] Braun P G, Fuller K D, McRae K, et al. Response of'honeycrisp'apple trees to combinations of pre-plant fumigation, deep ripping, and hog manure compost incorporation in a soil with replant disease[J]. Hortscience, 2010, 45(11):1702-1707.
[46] 朱兆良,金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报, 2013, 19(2):259-273.
[47] Chen L, Yang X, Raza W, et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1653-1663.
[48] Dzafic E, Pongrac P, Likar M, et al. The arbuscular mycorrhizal fungus Glomus mosseae alleviates autotoxic effects in maize (Zea mays L.)[J]. European Journal of Soil Biology, 2013, 58:59-65.
[49] Wu F, Ding Y, Nie Y, et al. Plant metabolomics integrated with transcriptomics and rhizospheric bacterial community indicates the mitigation effects of Klebsiella oxytoca P620 on p-hydroxybenzoic acid stress in cucumber[J]. Journal of Hazardous Materials, 2021, 415:125756.
[50] Atucha A, Litus G. Effect of biochar amendments peach replant disease[J]. Hortscience, 2015, 50(6):863-868.
[51] Elmer W H, Pignatello J J. Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils[J]. Plant Disease, 2011, 95(8):960-966.
[52] Ling N, Zhang W W, Wang D S, et al. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum[J]. PloS One, 2013, 8(6):e63383.
[53] Jiang G, Zhang Y, Gan G, et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation[J]. ISME Communications, 2022, 2:10.
[54] Wubs E R J, van der Putten W H, Bosch M, et al. Soil inoculation steers restoration of terrestrial ecosystems[J]. Nature Plants, 2016, 2(8):16107.
[55] Latz E, Eisenhauer N, Scheu S, et al. Plant identity drives the expression of biocontrol factors in a rhizosphere bacterium across a plant diversity gradient[J]. Functional Ecology, 2015, 29(9):1225-1234.
[56] Ma H K, Pineda A, van der Wurff A W G, et al. Plantsoil feedback effects on growth, defense and susceptibility to a soil-borne disease in a cut flower crop:Species and functional group effects[J]. Frontiers in Plant Science, 2017, 8:2127.
[57] Pineda A, Kaplan I, Hannula S E, et al. Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest[J]. New Phytologist, 2020, 226(2):595-608.
[58] Choi K, Choi J, Lee P A, et al. Alteration of bacterial wilt resistance in tomato plant by microbiota transplant[J]. Frontiers in Plant Science, 2020, 11:1186.
[59] Kwak M J, Kong H G, Choi K, et al. Rhizoshere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11):1100-1109.
[60] Hendriks M, Mommer L, de Caluwe H, et al. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding[J]. Journal of Ecology, 2013, 101(2):287-297.
[61] Mommer L, Cotton T E A, Raaijmakers J M, et al. Lost in diversity:The interactions between soil-borne fungi, biodiversity and plant productivity[J]. New Phytologist, 2018, 218(2):542-553.
[62] 李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415.
[63] Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27):11192-11196.
[64] Wang G Z, Li H G, Christie P, et al. Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bea[J]. Plant and Soil, 2017, 415(1/2):1-12.
[65] 吴凤芝,潘凯,刘守伟.设施土壤修复及连作障碍克服技术[J].中国蔬菜, 2013(13):39.
[66] Ding H Y, Ali A, Cheng Z H. Effect of green garlic/cucumber crop rotation for 3 years on the dynamics of soil properties and cucumber yield in Chinese anthrosol[J]. Journal of the Science of Food and Agriculture, 2020, 100(1):362-370.
[67] Zheng H B, Huang H, Zhang C M, et al. National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land[J]. Agricultural Water Management, 2016, 170:20-25.
[68] Jin X, Zhang J H, Shi Y J, et al. Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition[J]. Plant and Soil, 2019, 441(1/2):283-300.
[69] Manici L M, Caputo F, Nicoletti F, et al. The impact of legume and cereal cover crops on rhizosphere microbial communities of subsequent vegetable crops for contrasting crop decline[J]. Biological Control, 2018, 120:17-25.
[70] Bonanomi G, Antignani V, Pane C, et al. Suppression of soilborne fungal diseases with organic amendments[J]. Journal of Plant Pathology, 2007, 89(3):311-324.
[71] Li C X, Fu X P, Zhou X G, et al. Treatment with wheat root exudates and soil microorganisms from wheat/watermelon companion cropping can induce watermelon disease resistance against Fusarium oxysporum f. sp. niveum[J]. Plant Disease, 2019, 103(7):1693-1702.
[72] Li X, Jousset A, de Boer W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome[J]. ISME Journal, 2019, 13(3):738-751.
[73] Zhou X, Liu J, Wu F. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth[J]. Plant and Soil, 2017, 415(1/2):507-520.
[74] Li X G, Panke-Buisse K, Yao X D, et al. Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome[J]. Plant and Soil, 2020, 446(1/2):655-669.
[75] Xia Z, Kong C, Chen L, et al. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions[J]. Ecology, 2016, 97(9):2283-2292.
[76] Yu H, Chen S, Zhang X, et al. Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium oxysporum f. sp. niveum invasion[J]. Plant and Soil, 2019, 445(1/2):369-381.
[77] 陈欣,王兆骞,唐建军.农业生态系统杂草多样性保持的生态学功能[J].生态学杂志, 2000, 19(4):50-52.
[78] Hättenschwiler S, Tiunov A V, Scheu S. Biodiversity and litter decomposition interrestrial ecosystems[J]. Annual Review of Ecology Evolution and Systematics, 2005, 36:191-218.
[79] Steinauer K, Chatzinotas A, Eisenhauer N. Root exudate cocktails:The link between plant diversity and soil microorganisms[J]. Ecology and Evolution, 2016, 6(20):7387-7396.
文章导航

/