[1] Bever J D, Platt T G, Morton E R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66:265-283.
[2] Kleijn D, Bommarco R, Fijen T P M, et al. Ecological intensification:Bridging the gap between science and practice[J]. Trends in Ecology & Evolution, 2019, 34(2):154-166.
[3] 韦中,沈宗专,杨天杰,等.从抑病土壤到根际免疫:概念提出与发展思考[J].土壤学报, 2021, 58(4):814-824.
[4] van der Putten W H, Bardgett R D, Bever J D, et al. Plant-soil feedbacks:The past, the present and future challenges[J]. Journal of Ecology, 2013, 101(2):265-276.
[5] 喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报, 2000, 31(1):124-126.
[6] Huang L, Song L, Xia X, et al. Plant-soil feedbacks and soil sickness:From mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013, 39(2):232-242.
[7] Cesarano G, Zotti M, Antignani V, et al. Soil sickness and negative plant-soil feedback:A reappraisal of hypotheses[J]. Journal of Plant Pathology, 2017, 99(3):545-570.
[8] 张俊伶,张江周,申建波,等.土壤健康与农业绿色发展:机遇与对策[J].土壤学报, 2020, 57(4):783-796.
[9] 蔡祖聪,黄新琦.土壤学不应忽视对作物土传病原微生物的研究[J].土壤学报, 2016, 53(2):305-310.
[10] Patrick Z A. Phytotoxic substances associated with the decomposition in soil of plant residues[J]. Soil Science, 1971, 111(1):13-18.
[11] Bennett J A, Klironomos J. Mechanisms of plant-soil feedback:Interactions among biotic and abiotic drivers[J]. New Phytologist, 2019, 222(1):91-96.
[12] Inderjit, van der Putten W H. Impacts of soil microbial communities on exotic plant invasions[J]. Trends in Ecology & Evolution, 2010, 25(9):512-519.
[13] Bever J D, Westover K M, Antonovics J. Incorporating the soil community into plant population dynamics:The utility of the feedback approach[J]. Journal of Ecology, 1997, 85(5):561-573.
[14] Fujii K, Shibata M, Kitajima K, et al. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems[J]. Ecological Research, 2018, 33(1):149-160.
[15] Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits?[J]. New Phytologist, 2014, 204(2):408-423.
[16] Hobbie S E. Plant species effects on nutrient cycling:Revisiting litter feedbacks[J]. Trends in Ecology & Evolution, 2015, 30(6):357-363.
[17] Castle S C, Lekberg Y, Affleck D, et al. Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape[J]. Journal of Ecology, 2016, 104(6):1555-1565.
[18] Cortois R, Schroeder-Georgi T, Weigelt A, et al. Plantsoil feedbacks:Role of plant functional group and plant traits[J]. Journal of Ecology, 2016, 104(6):1608-1617.
[19] Revillini D, Gehring C A, Johnson N C. The role of locally adapted mycorrhizas and rhizobacteria in plantsoil feedback systems[J]. Functional Ecology, 2016, 30(7):1086-1098.
[20] Fitzpatrick C R, Copeland J, Wang P W, et al. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6):1157-1165.
[21] Bennett J A, Maherali H, Reinhart K O, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics[J]. Science, 2017, 355(6321):181-184.
[22] Teste F P, Kardol P, Turner B L, et al. Plant-soil feedback and the maintenance of diversity in Mediterraneanclimate shrublands[J]. Science, 2017, 355(6321):173-176.
[23] Callaway R M, Ridenour W M. Novel weapons:Invasive success and the evolution of increased competitive ability[J]. Frontiers in Ecology and the Environment, 2004, 2(8):436-443.
[24] Singh H P, Batish D R, Kohli R K. Autotoxicity:Concept, organisms and ecological significance[J]. Critical Reviews in Plant Sciences, 1999, 18:757-772.
[25] Stinson K A, Campbell S A, Powell J R, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms[J]. PLoS Biology, 2006, 4(5):727-731.
[26] Zhou X, Zhang J, Pan D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions[J]. Biology and Fertility of Soils, 2018, 54(3):363-372.
[27] Jin X, Wu F, Zhou X. Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition[J]. Biology and Fertility of Soils, 2020, 56(1):125-136.
[28] Bezemer T M, Lawson C S, Hedlund K, et al. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands[J]. Journal of Ecology, 2006, 94(5):893-904.
[29] Ke P J, Miki T, Ding T S. The soil microbial community predicts the importance of plant traits in plant-soil feedback[J]. New Phytologist, 2015, 206(1):329-341.
[30] Gilbert G S, Webb C O. Phylogenetic signal in plant pathogen-host range[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12):4979-4983.
[31] Tedersoo L, Mett M, Ishida T A, et al. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis[J]. New Phytologist, 2013, 199(3):822-831.
[32] Sawers R J H, Ramirez-Flores M R, Olalde-Portugal V, et al. The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals:Insights from genetics and genomics[J]. New Phytologist, 2018, 220(4):1135-1140.
[33] Mariotte P, Mehrabi Z, Bezemer T M, et al. Plant-soil feedback:Bridging natural and agricultural sciences[J]. Trends in Ecology & Evolution, 2018, 33(2):129-142.
[34] Wei Z, Jousset A. Plant breeding goes microbial[J]. Trends in Plant Science, 2017, 22(7):555-558.
[35] Mazzoleni S, Bonanomi G, Incerti G, et al. Inhibitory and toxic effects of extracellular self-DNA in litter:A mechanism for negative plant-soil feedbacks[J]. New Phytologist, 2015, 205(3):1195-1210.
[36] Yu J Q, Matsui Y. Phytotoxic substances in the root exudates of Cucumis sativus L.[J]. Journal of Chemical Ecology, 1994, 20:21-31.
[37] Bennett A J, Bending G D, Chandler D, et al. Meeting the demand for crop production:The challenge of yield decline in crops grown in short rotations[J]. Biological Reviews, 2012, 87(1):52-71.
[38] Raaijmakers J M, Mazzola M. Soil immune responses:Soil microbiomes may be harnessed for plant health[J]. Science, 2016, 352(6292):1392-1393.
[39] Mendes R, Kruijt M, de Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033):1097-1100.
[40] Cha J Y, Han S, Hong H J, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil[J]. ISME Journal, 2016, 10(1):119-129.
[41] Berendsen R L, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME Journal, 2018, 12(6):1496-1507.
[42] Nie L, Peng S, Bouman B A, et al. Alleviating soil sickness caused by aerobic monocropping:Responses of aerobic rice to various nitrogen sources[J]. Soil Science and Plant Nutrition, 2009, 55:150-159.
[43] Nie L X, Peng S B, Bouman B A M, et al. Alleviating soil sickness caused by aerobic monocropping:Responses of aerobic rice to nutrient supply[J]. Field Crops Research, 2008, 107(2):129-136.
[44] Bonanomi G, De Filippis F, Zotti M, et al. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield[J]. Applied Soil Ecology, 2020, 156:103714.
[45] Braun P G, Fuller K D, McRae K, et al. Response of'honeycrisp'apple trees to combinations of pre-plant fumigation, deep ripping, and hog manure compost incorporation in a soil with replant disease[J]. Hortscience, 2010, 45(11):1702-1707.
[46] 朱兆良,金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报, 2013, 19(2):259-273.
[47] Chen L, Yang X, Raza W, et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1653-1663.
[48] Dzafic E, Pongrac P, Likar M, et al. The arbuscular mycorrhizal fungus Glomus mosseae alleviates autotoxic effects in maize (Zea mays L.)[J]. European Journal of Soil Biology, 2013, 58:59-65.
[49] Wu F, Ding Y, Nie Y, et al. Plant metabolomics integrated with transcriptomics and rhizospheric bacterial community indicates the mitigation effects of Klebsiella oxytoca P620 on p-hydroxybenzoic acid stress in cucumber[J]. Journal of Hazardous Materials, 2021, 415:125756.
[50] Atucha A, Litus G. Effect of biochar amendments peach replant disease[J]. Hortscience, 2015, 50(6):863-868.
[51] Elmer W H, Pignatello J J. Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils[J]. Plant Disease, 2011, 95(8):960-966.
[52] Ling N, Zhang W W, Wang D S, et al. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum[J]. PloS One, 2013, 8(6):e63383.
[53] Jiang G, Zhang Y, Gan G, et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation[J]. ISME Communications, 2022, 2:10.
[54] Wubs E R J, van der Putten W H, Bosch M, et al. Soil inoculation steers restoration of terrestrial ecosystems[J]. Nature Plants, 2016, 2(8):16107.
[55] Latz E, Eisenhauer N, Scheu S, et al. Plant identity drives the expression of biocontrol factors in a rhizosphere bacterium across a plant diversity gradient[J]. Functional Ecology, 2015, 29(9):1225-1234.
[56] Ma H K, Pineda A, van der Wurff A W G, et al. Plantsoil feedback effects on growth, defense and susceptibility to a soil-borne disease in a cut flower crop:Species and functional group effects[J]. Frontiers in Plant Science, 2017, 8:2127.
[57] Pineda A, Kaplan I, Hannula S E, et al. Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest[J]. New Phytologist, 2020, 226(2):595-608.
[58] Choi K, Choi J, Lee P A, et al. Alteration of bacterial wilt resistance in tomato plant by microbiota transplant[J]. Frontiers in Plant Science, 2020, 11:1186.
[59] Kwak M J, Kong H G, Choi K, et al. Rhizoshere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11):1100-1109.
[60] Hendriks M, Mommer L, de Caluwe H, et al. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding[J]. Journal of Ecology, 2013, 101(2):287-297.
[61] Mommer L, Cotton T E A, Raaijmakers J M, et al. Lost in diversity:The interactions between soil-borne fungi, biodiversity and plant productivity[J]. New Phytologist, 2018, 218(2):542-553.
[62] 李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415.
[63] Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27):11192-11196.
[64] Wang G Z, Li H G, Christie P, et al. Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bea[J]. Plant and Soil, 2017, 415(1/2):1-12.
[65] 吴凤芝,潘凯,刘守伟.设施土壤修复及连作障碍克服技术[J].中国蔬菜, 2013(13):39.
[66] Ding H Y, Ali A, Cheng Z H. Effect of green garlic/cucumber crop rotation for 3 years on the dynamics of soil properties and cucumber yield in Chinese anthrosol[J]. Journal of the Science of Food and Agriculture, 2020, 100(1):362-370.
[67] Zheng H B, Huang H, Zhang C M, et al. National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land[J]. Agricultural Water Management, 2016, 170:20-25.
[68] Jin X, Zhang J H, Shi Y J, et al. Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition[J]. Plant and Soil, 2019, 441(1/2):283-300.
[69] Manici L M, Caputo F, Nicoletti F, et al. The impact of legume and cereal cover crops on rhizosphere microbial communities of subsequent vegetable crops for contrasting crop decline[J]. Biological Control, 2018, 120:17-25.
[70] Bonanomi G, Antignani V, Pane C, et al. Suppression of soilborne fungal diseases with organic amendments[J]. Journal of Plant Pathology, 2007, 89(3):311-324.
[71] Li C X, Fu X P, Zhou X G, et al. Treatment with wheat root exudates and soil microorganisms from wheat/watermelon companion cropping can induce watermelon disease resistance against Fusarium oxysporum f. sp. niveum[J]. Plant Disease, 2019, 103(7):1693-1702.
[72] Li X, Jousset A, de Boer W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome[J]. ISME Journal, 2019, 13(3):738-751.
[73] Zhou X, Liu J, Wu F. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth[J]. Plant and Soil, 2017, 415(1/2):507-520.
[74] Li X G, Panke-Buisse K, Yao X D, et al. Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome[J]. Plant and Soil, 2020, 446(1/2):655-669.
[75] Xia Z, Kong C, Chen L, et al. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions[J]. Ecology, 2016, 97(9):2283-2292.
[76] Yu H, Chen S, Zhang X, et al. Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium oxysporum f. sp. niveum invasion[J]. Plant and Soil, 2019, 445(1/2):369-381.
[77] 陈欣,王兆骞,唐建军.农业生态系统杂草多样性保持的生态学功能[J].生态学杂志, 2000, 19(4):50-52.
[78] Hättenschwiler S, Tiunov A V, Scheu S. Biodiversity and litter decomposition interrestrial ecosystems[J]. Annual Review of Ecology Evolution and Systematics, 2005, 36:191-218.
[79] Steinauer K, Chatzinotas A, Eisenhauer N. Root exudate cocktails:The link between plant diversity and soil microorganisms[J]. Ecology and Evolution, 2016, 6(20):7387-7396.