专题:土壤生态学

土壤病毒的研究进展与应用前景

  • 韩丽丽 ,
  • 曹苗苗 ,
  • 毕丽 ,
  • 张丽梅 ,
  • 贺纪正
展开
  • 1. 中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085;
    2. 中国科学院大学, 北京 100049;
    3. 福建师范大学地理科学学院, 福州 350007
韩丽丽,副研究员,研究方向为土壤病毒生态学,电子信箱:llhan@rcees.ac.cn

收稿日期: 2021-07-14

  修回日期: 2021-11-27

  网络出版日期: 2022-03-25

基金资助

国家自然科学基金项目(41771289);中国科学院黑土地保护与利用科技创新工程专项(XDA28020100)

Research advances and application prospect of soil viruses

  • HAN Lili ,
  • CAO Miaomiao ,
  • BI Li ,
  • ZHANG Limei ,
  • HE Jizheng
Expand
  • 1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

Received date: 2021-07-14

  Revised date: 2021-11-27

  Online published: 2022-03-25

摘要

病毒是地球上数量最多的生物实体,在调控宿主群落组成、推动宿主进化及影响土壤元素的生物地球化学循环等方面起着非常重要的作用。概括了环境病毒的研究历史及发展现状,揭示了病毒生态学的发展历程;分析了土壤病毒生态学常用研究方法(包括表型、基因多样性、宏基因组、生物信息学分析等),阐述了土壤病毒的多样性、病毒在土壤生态系统中的生态功能;展望了环境噬菌体的应用(噬菌体疗法)及发展前景。

本文引用格式

韩丽丽 , 曹苗苗 , 毕丽 , 张丽梅 , 贺纪正 . 土壤病毒的研究进展与应用前景[J]. 科技导报, 2022 , 40(3) : 75 -86 . DOI: 10.3981/j.issn.1000-7857.2022.03.007

Abstract

Viruses are the most abundant biological entities on the planet and have important roles in microbial community composition,host evolution and nutrient biogeochemical cycles.Firstly,this article summarizes the research history and development status of environmental viruses and reveals the development process of virus ecology,with focuses on comparative approaches to study soil viral ecology including phenotype,gene diversity,metagenomic,bioinformatics analysis,etc.Then based on these approaches,soil viruses diversity is expounded and the ecological function of soil viruses is further explored.Finally,the application and development prospects of environmental phages (phage therapy) are reviewed and prospected.

参考文献

[1] Edwards R A, Rohwer F. Viral metagenomics[J]. Nature Reviews Microbiology, 2005, 3(6):504-510.
[2] Dion M B, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3):125-138.
[3] 王光华,刘俊杰,朱冬,等.土壤病毒的研究进展与挑战[J].土壤学报, 2020, 57(6):1319-1332.
[4] 朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学, 2021, 51(1):1-11.
[5] Pomeroy L R. The ocean's food web, a changing paradigm[J]. Bioscience, 1974, 24(9):499-504.
[6] Rohwer F, Thurber R V. Viruses manipulate the marine environment[J]. Nature, 2009, 459(7244):207-212.
[7] Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities[J]. Proceedings of the National Academy of Sciences, 2002, 99(22):14250-14255.
[8] Scola V, Ramond J B, Frossard A, et al. Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient[J]. Microbial Ecology, 2018, 75(1):193-203.
[9] Zablocki O, Adriaenssens E M, Cowan D. Diversity and ecology of viruses in hyperarid desert soils[J]. Applied and Environmental Microbiology, 2016, 82(3):770-777.
[10] Jin M, Guo X, Zhang R, et al. Diversities and potential biogeochemical impacts of mangrove soil viruses[J]. Microbiome, 2019, 7(1):58.
[11] Adriaenssens E M, Kramer R, Van Goethem M W, et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics[J]. Microbiome, 2017, 5(1):83.
[12] Han L L, Yu D T, Zhang L M, et al. Unique community structure of viruses in a glacier soil of the Tianshan Mountains, China[J]. Journal of Soils and Sediments, 2017, 17:852-860.
[13] Trubl G, Jang H B, Roux S, et al. Soil viruses are underexplored players in ecosystem carbon processing[J]. MSystems, 2018, 3(5):e00076-00018.
[14] Emerson J B, Roux S, Brum J R, et al. Host-linked soil viral ecology along a permafrost thaw gradient[J]. Nature Microbiology, 2018, 3(8):870.
[15] Bi L, Yu D T, Du S, et al. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils[J]. Environmental Microbiology, 2021, 23(2):588-599.
[16] 韩丽丽,于丹婷,贺纪正.土壤病毒生态学研究方法[J].生态学报, 2017, 37(6):1749-1756.
[17] Williamson K E, Fuhrmann J J, Wommack K E, et al. Viruses in soil ecosystems:An unknown quantity within an unexplored territory[J]. Annual Review of Virology, 2017, 4:201-219.
[18] Wen K, Ortmann A C, Suttle C A. Accurate estimation of viral abundance by epifluorescence microscopy[J]. Applied Environmental Microbiology, 2004, 70:3862-3867.
[19] Wu R, Davison M R, Nelson W, et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes[J]. mBio, 2021, 12(6):e02595-21.
[20] Liang X L, Wagner R E, Zhuang J, et al. Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol[J]. Soil Biology & Biochemistry, 2019, 137:107546.
[21] Adriaenssens E M, Cowan D A. Using signature genes as tools to assess environmental viral ecology and diversity[J]. Applied and Environmental Microbiology, 2014, 80(15):4470-4480.
[22] Jameson E, Mann N H, Joint I, et al. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect[J]. The ISME Journal, 2011, 5(11):1713-1721.
[23] Chow C E T, Fuhrman J A. Seasonality and monthly dynamics of marine myovirus communities[J]. Environmental Microbiology, 2012, 14(8):2171-2183.
[24] Wang G, Yu Z, Liu J, et al. Molecular analysis of the major capsid genes (g23) of T4-type bacteriophages in an upland black soil in Northeast China[J]. Biology and Fertility of Soils, 2011, 47(3):273-282.
[25] Liu J, Wang G, Zheng C, et al. Specific assemblages of major capsid genes (g23) of T4-type bacteriophages isolated from upland black soils in Northeast China[J]. Soil Biology and Biochemistry, 2011, 43(9):1980-1984.
[26] Wang X, Liu J, Yu Z, et al. Novel groups and unique distribution of phage phoH genes in paddy waters in northeast China[J]. Scientific Reports, 2016, 6:38428.
[27] Goldsmith D B, Crosti G, Dwivedi B, et al. Development of phoH as a novel signature gene for assessing marine phage diversity[J]. Applied and Environmental Microbiology, 2011, 77(21):7730-7739.
[28] Han L L, Yu D T, Bi L, et al. Distribution of soil viruses across China and their potential role in phosphorous metabolism[J]. Environmental Microbiome, 2022, 17(6):1-11.
[29] Li Y, Hingamp P, Watai H, et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters[J]. Viruses, 2018, 10(9):496.
[30] Brum J R, Sullivan M B. Rising to the challenge:Accelerated pace of discovery transforms marine virology[J]. Nature Reviews Microbiology, 2015, 13(3):147.
[31] Thurber R V, Haynes M, Breitbart M, et al. Laboratory procedures to generate viral metagenomes[J]. Nature Protocols, 2009, 4(4):470.
[32] Trubl G, Roux S, Solonenko N, et al. Towards optimized viral metagenomes for double-stranded and singlestranded DNA viruses from challenging soils[J]. PeerJ, 2019, 7:e7265.
[33] Roux S, Solonenko N E, Dang V T, et al. Towards quantitative viromics for both double-stranded and singlestranded DNA viruses[J]. PeerJ, 2016, 4:e2777.
[34] Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, et al. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses[J]. Microbiome, 2018, 6(1):1-18.
[35] Corinaldesi C, Tangherlini M, Dell'Anno A. From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments[J]. Scientific Reports, 2017, 7(1):1-12.
[36] Binga E K, Lasken R S, Neufeld J D. Something from (almost) nothing:The impact of multiple displacement amplification on microbial ecology[J]. The ISME Journal, 2008, 2(3):233-241.
[37] Karlsson O E, Belák S, Granberg F. The effect of preprocessing by sequence-independent, single-primer amplification (SISPA) on metagenomic detection of viruses[J]. Biosecurity and Bioterrorism:Biodefense Strategy, Practice, and Science, 2013, 11(Suppl 1):S227-S234.
[38] Roux S, Adriaenssens E M, Dutilh B E, et al. Minimum information about an uncultivated virus genome (MIUViG)[J]. Nature Biotechnology, 2019, 37(1):29-37.
[39] Wommack K E, Bhavsar J, Polson S W, et al. VIROME:A standard operating procedure for analysis of viral metagenome sequences[J]. Standards in Genomic Sciences, 2012, 6(3):427.
[40] Roux S, Tournayre J, Mahul A, et al. Metavir 2:New tools for viral metagenome comparison and assembled virome analysis[J]. BMC Bioinformatics, 2014, 15(1):76.
[41] Nayfach S, Camargo A P, Schulz F, et al. CheckV:Assesses the quality and completeness of metagenome-assembled viral genomes[J]. Nature Biotechnology, 2021, 39:578-585.
[42] Roux S, Enault F, Hurwitz B L, et al. VirSorter:Mining viral signal from microbial genomic data[J]. PeerJ, 2015, 3:e985.
[43] Kieft K, Zhou Z, Anantharaman K. Vibrant:Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences[J]. Microbiome, 2020, 8(1):90.
[44] Zhao G, Wu G, Lim E S, et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis[J]. Virology, 2017, 503:21-30.
[45] Bolduc B, Youens-Clark K, Roux S, et al. iVirus:Facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure[J]. The ISME Journal, 2017, 11(1):7-14.
[46] Shkoporov A N, Hill C. Bacteriophages of the human gut:The"known unknown"of the microbiome[J]. Cell Host & Microbe, 2019, 25(2):195-209.
[47] Hulo C, De Castro E, Masson P, et al. ViralZone:A knowledge resource to understand virus diversity[J]. Nucleic Acids Research, 2011, 39:576-582.
[48] Masson P, Hulo C, De Castro E, et al. ViralZone:Recent updates to the virus knowledge resource[J]. Nucleic Acids Research, 2012, 41(D1):579-583.
[49] Ahlgren N, Ren J, Lu Y, et al. Alignment-free d2*oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences[J]. Nucleic Acids Research, 2017, 45(1):39-53.
[50] Coutinho F H, Zaragoza-Solas A, López-Pérez M, et al. RaFAH:A superior method for virus-host prediction[J]. Patterns, 2021, 2:100274.
[51] Zhang F, Zhou F, Gan R, et al. PHISDetector:A tool to detect diverse in silico phage-host interaction signals for virome studies[J]. BioRxiv, 2020:661074.
[52] Pons J C, Paez-Espino D, Riera G, et al. VPF-Class:Taxonomic assignment and host prediction of uncultivated viruses based on viral protein families[J]. Bioinformatics, 2021, btab026.
[53] Bolduc B, Jang H B, Doulcier G, et al. vConTACT:An iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria[J]. PeerJ, 2017, 5:e3243.
[54] Bin Jang H, Bolduc B, Zablocki O, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks[J]. Nature Biotechnology, 37(6):632-639.
[55] Bland C, Ramsey T L, Sabree F, et al. CRISPR recognition tool (CRT):A tool for automatic detection of clustered regularly interspaced palindromic repeats[J]. BMC Bioinformatics, 2007, 8(1):1-8.
[56] 王光华.掀开土壤生物"暗物质"——土壤病毒的神秘面纱[J].中国科学院院刊, 2017, 32(6):575-583.
[57] Sausset R, Petit M, Gaboriau-Routhiau V, et al. New insights into intestinal phages[J]. Mucosal Immunology, 2020, 13(2):205-215.
[58] Batinovic S, Wassef F, Knowler S A, et al. Bacteriophages in natural and artificial environments[J]. Pathogens, 2019, 8(3):100.
[59] Murray A G, Jackson G A. Viral dynamics:A model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles[J]. Marine Ecology Progress Series, 1992:103-116.
[60] Fancello L, Trape S, Robert C, et al. Viruses in the desert:A metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara[J]. The ISME Journal, 2013, 7(2):359-369.
[61] Knowles B, Silveira C, Bailey B, et al. Lytic to temperate switching of viral communities[J]. Nature, 2016, 531(7595):466.
[62] Weinbauer M G, Brettar I, Höfle M G. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters[J]. Limnology Oceanography, 2003, 48(4):1457-1465.
[63] Stewart F M, Levin B R. The population biology of bacterial viruses:Why be temperate[J]. Theoretical Population Biology, 1984, 26(1):93-117.
[64] Tan D, Hansen M F, de Carvalho L N, et al. High cell densities favor lysogeny:Induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum[J]. The ISME Journal, 2020, 14(7):1731-1742.
[65] Li Y, Sun H, Yang W, et al. Dynamics of bacterial and viral communities in paddy soil with irrigation and urea application[J]. Viruses, 2019, 11(4):347.
[66] Anderson R E, Brazelton W J, Baross J A. The deep viriosphere:Assessing the viral impact on microbial community dynamics in the deep subsurface[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):649-675.
[67] Stanton T B. Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species[J]. Anaerobe, 2007, 13(2):43-49.
[68] Hurwitz B L, U'Ren J M. Viral metabolic reprogramming in marine ecosystems[J]. Current Opinion in Microbiology, 2016, 31:161-168.
[69] Koskella B, Brockhurst M A. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J]. FEMS Microbiology Reviews, 2014, 38(5):916-931.
[70] Stern A, Sorek R. The phage-host arms race:Shaping the evolution of microbes[J]. Bioessays, 2011, 33(1):43-51.
[71] Ducklow H W, Steinberg D K, Buesseler K O. Upper ocean carbon export and the biological pump[J]. Oceanography, 2001, 14(4):50-58.
[72] Suttle C A. Viruses in the sea[J]. Nature, 2005, 437(7057):356-361.
[73] Wilhelm S W, Suttle C A. Viruses and Nutrient Cycles in the Sea Viruses play critical roles in the structure and function of aquatic food webs[J]. Bioscience, 1999, 49(10):781-788.
[74] Weinbauer M G, Rassoulzadegan F. Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2004, 6(1):1-11.
[75] Kuzyakov Y, Mason-Jones K. Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions[J]. Soil Biology and Biochemistry, 2018, 127:305-317.
[76] Monier A, Chambouvet A, Milner D S, et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton[J]. Proceedings of the National Academy of Sciences, 2017, 114(36):E7489-E7498.
[77] Roux S, Brum J R, Dutilh B E, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses[J]. Nature, 2016, 537(7622):689-693.
[78] Breitbart M, Thompson L R, Suttle C A, et al. Exploring the vast diversity of marine viruses[J]. Oceanography, 2007, 20(2):135-139.
[79] Mann N H, Cook A, Millard A, et al. Marine ecosystems:Bacterial photosynthesis genes in a virus[J]. Nature, 2003, 424(6950):741.
[80] Rohwer F, Segall A M. A century of phage lessons[J]. Nature, 2015, 528(7580):46-47.
[81] Adriaenssens E M, Van Zyl L, De Maayer P, et al. Metagenomic analysis of the viral community in Namib Desert hypoliths[J]. Environmental Microbiology, 2015, 17(2):480-495.
[82] Huang D, Yu P, Ye M, et al. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress[J]. Microbiome, 2021, 9:150.
[83] Sharon I, Battchikova N, Aro E-M, et al. Comparative metagenomics of microbial traits within oceanic viral communities[J]. The ISME Journal, 2011, 5:1178-1190.
[84] Shaffer M, Borton M A, McGivern B B, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function[J]. Nucleic Acids Research, 2020, 48(16):8883-8900.
[85] 李升伟.噬菌体:一个世纪的历史回顾[J].世界科学, 2016(1):42-43.
[86] Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Methods, 2019, 25(5):730-733.
[87] García P, Rodríguez L, Rodríguez A, et al. Food biopreservation:Promising strategies using bacteriocins, bacteriophages and endolysins[J]. Trends in Food Science & Technology, 2010, 21(8):373-382.
[88] 蔡天舒,王静雪,林洪,等.金黄色葡萄球菌噬菌体的生物学特性及其在牛奶中的抑菌应用[J].食品科学, 2013, 34(11):147-151.
[89] 刘婷.假单胞菌噬菌体的筛选及在冷却羊肉中的应用[D].呼和浩特:内蒙古农业大学, 2020.
[90] 王志丽.中华鳖养殖中芽孢杆菌,嗜水气单胞菌及其噬菌体的分离和性质研究[D].保定:河北大学, 2012.
[91] Li Z, Zhang J, Li X, et al. Efficiency of a bacteriophage in controlling vibrio infection in the juvenile sea cucumber Apostichopus japonicus[J]. Aquaculture, 2016, 451:345-352.
[92] 杨扬.应用噬菌体防治弧菌引发的刺参腐皮综合征[D].大连:大连理工大学, 2013.
[93] 李新宇,孜力汗,张宝会,等.噬菌体在水产养殖中应用的研究进展[J].中国农业科技导报, 2016, 18(5):187-192.
[94] Wang X, Wei Z, Yang K, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12):1513-1520.
[95] Fujjwara A, Fujjsawa M, Hamasaki R, et al. Biocontrol of ralstonia solanacearum by treatment with lytic bacteriophages[J]. Applied and Environmental Microbiology, 2011, 77(12):4155-4162.
[96] Chae J C, Hung N B, Yu S M, et al. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice[J]. Journal of Microbiology and Biotechnology, 2014, 24(6):740-747.
文章导航

/