[1] Edwards R A, Rohwer F. Viral metagenomics[J]. Nature Reviews Microbiology, 2005, 3(6):504-510.
[2] Dion M B, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3):125-138.
[3] 王光华,刘俊杰,朱冬,等.土壤病毒的研究进展与挑战[J].土壤学报, 2020, 57(6):1319-1332.
[4] 朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学, 2021, 51(1):1-11.
[5] Pomeroy L R. The ocean's food web, a changing paradigm[J]. Bioscience, 1974, 24(9):499-504.
[6] Rohwer F, Thurber R V. Viruses manipulate the marine environment[J]. Nature, 2009, 459(7244):207-212.
[7] Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities[J]. Proceedings of the National Academy of Sciences, 2002, 99(22):14250-14255.
[8] Scola V, Ramond J B, Frossard A, et al. Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient[J]. Microbial Ecology, 2018, 75(1):193-203.
[9] Zablocki O, Adriaenssens E M, Cowan D. Diversity and ecology of viruses in hyperarid desert soils[J]. Applied and Environmental Microbiology, 2016, 82(3):770-777.
[10] Jin M, Guo X, Zhang R, et al. Diversities and potential biogeochemical impacts of mangrove soil viruses[J]. Microbiome, 2019, 7(1):58.
[11] Adriaenssens E M, Kramer R, Van Goethem M W, et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics[J]. Microbiome, 2017, 5(1):83.
[12] Han L L, Yu D T, Zhang L M, et al. Unique community structure of viruses in a glacier soil of the Tianshan Mountains, China[J]. Journal of Soils and Sediments, 2017, 17:852-860.
[13] Trubl G, Jang H B, Roux S, et al. Soil viruses are underexplored players in ecosystem carbon processing[J]. MSystems, 2018, 3(5):e00076-00018.
[14] Emerson J B, Roux S, Brum J R, et al. Host-linked soil viral ecology along a permafrost thaw gradient[J]. Nature Microbiology, 2018, 3(8):870.
[15] Bi L, Yu D T, Du S, et al. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils[J]. Environmental Microbiology, 2021, 23(2):588-599.
[16] 韩丽丽,于丹婷,贺纪正.土壤病毒生态学研究方法[J].生态学报, 2017, 37(6):1749-1756.
[17] Williamson K E, Fuhrmann J J, Wommack K E, et al. Viruses in soil ecosystems:An unknown quantity within an unexplored territory[J]. Annual Review of Virology, 2017, 4:201-219.
[18] Wen K, Ortmann A C, Suttle C A. Accurate estimation of viral abundance by epifluorescence microscopy[J]. Applied Environmental Microbiology, 2004, 70:3862-3867.
[19] Wu R, Davison M R, Nelson W, et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes[J]. mBio, 2021, 12(6):e02595-21.
[20] Liang X L, Wagner R E, Zhuang J, et al. Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol[J]. Soil Biology & Biochemistry, 2019, 137:107546.
[21] Adriaenssens E M, Cowan D A. Using signature genes as tools to assess environmental viral ecology and diversity[J]. Applied and Environmental Microbiology, 2014, 80(15):4470-4480.
[22] Jameson E, Mann N H, Joint I, et al. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect[J]. The ISME Journal, 2011, 5(11):1713-1721.
[23] Chow C E T, Fuhrman J A. Seasonality and monthly dynamics of marine myovirus communities[J]. Environmental Microbiology, 2012, 14(8):2171-2183.
[24] Wang G, Yu Z, Liu J, et al. Molecular analysis of the major capsid genes (g23) of T4-type bacteriophages in an upland black soil in Northeast China[J]. Biology and Fertility of Soils, 2011, 47(3):273-282.
[25] Liu J, Wang G, Zheng C, et al. Specific assemblages of major capsid genes (g23) of T4-type bacteriophages isolated from upland black soils in Northeast China[J]. Soil Biology and Biochemistry, 2011, 43(9):1980-1984.
[26] Wang X, Liu J, Yu Z, et al. Novel groups and unique distribution of phage phoH genes in paddy waters in northeast China[J]. Scientific Reports, 2016, 6:38428.
[27] Goldsmith D B, Crosti G, Dwivedi B, et al. Development of phoH as a novel signature gene for assessing marine phage diversity[J]. Applied and Environmental Microbiology, 2011, 77(21):7730-7739.
[28] Han L L, Yu D T, Bi L, et al. Distribution of soil viruses across China and their potential role in phosphorous metabolism[J]. Environmental Microbiome, 2022, 17(6):1-11.
[29] Li Y, Hingamp P, Watai H, et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters[J]. Viruses, 2018, 10(9):496.
[30] Brum J R, Sullivan M B. Rising to the challenge:Accelerated pace of discovery transforms marine virology[J]. Nature Reviews Microbiology, 2015, 13(3):147.
[31] Thurber R V, Haynes M, Breitbart M, et al. Laboratory procedures to generate viral metagenomes[J]. Nature Protocols, 2009, 4(4):470.
[32] Trubl G, Roux S, Solonenko N, et al. Towards optimized viral metagenomes for double-stranded and singlestranded DNA viruses from challenging soils[J]. PeerJ, 2019, 7:e7265.
[33] Roux S, Solonenko N E, Dang V T, et al. Towards quantitative viromics for both double-stranded and singlestranded DNA viruses[J]. PeerJ, 2016, 4:e2777.
[34] Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, et al. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses[J]. Microbiome, 2018, 6(1):1-18.
[35] Corinaldesi C, Tangherlini M, Dell'Anno A. From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments[J]. Scientific Reports, 2017, 7(1):1-12.
[36] Binga E K, Lasken R S, Neufeld J D. Something from (almost) nothing:The impact of multiple displacement amplification on microbial ecology[J]. The ISME Journal, 2008, 2(3):233-241.
[37] Karlsson O E, Belák S, Granberg F. The effect of preprocessing by sequence-independent, single-primer amplification (SISPA) on metagenomic detection of viruses[J]. Biosecurity and Bioterrorism:Biodefense Strategy, Practice, and Science, 2013, 11(Suppl 1):S227-S234.
[38] Roux S, Adriaenssens E M, Dutilh B E, et al. Minimum information about an uncultivated virus genome (MIUViG)[J]. Nature Biotechnology, 2019, 37(1):29-37.
[39] Wommack K E, Bhavsar J, Polson S W, et al. VIROME:A standard operating procedure for analysis of viral metagenome sequences[J]. Standards in Genomic Sciences, 2012, 6(3):427.
[40] Roux S, Tournayre J, Mahul A, et al. Metavir 2:New tools for viral metagenome comparison and assembled virome analysis[J]. BMC Bioinformatics, 2014, 15(1):76.
[41] Nayfach S, Camargo A P, Schulz F, et al. CheckV:Assesses the quality and completeness of metagenome-assembled viral genomes[J]. Nature Biotechnology, 2021, 39:578-585.
[42] Roux S, Enault F, Hurwitz B L, et al. VirSorter:Mining viral signal from microbial genomic data[J]. PeerJ, 2015, 3:e985.
[43] Kieft K, Zhou Z, Anantharaman K. Vibrant:Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences[J]. Microbiome, 2020, 8(1):90.
[44] Zhao G, Wu G, Lim E S, et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis[J]. Virology, 2017, 503:21-30.
[45] Bolduc B, Youens-Clark K, Roux S, et al. iVirus:Facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure[J]. The ISME Journal, 2017, 11(1):7-14.
[46] Shkoporov A N, Hill C. Bacteriophages of the human gut:The"known unknown"of the microbiome[J]. Cell Host & Microbe, 2019, 25(2):195-209.
[47] Hulo C, De Castro E, Masson P, et al. ViralZone:A knowledge resource to understand virus diversity[J]. Nucleic Acids Research, 2011, 39:576-582.
[48] Masson P, Hulo C, De Castro E, et al. ViralZone:Recent updates to the virus knowledge resource[J]. Nucleic Acids Research, 2012, 41(D1):579-583.
[49] Ahlgren N, Ren J, Lu Y, et al. Alignment-free d2*oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences[J]. Nucleic Acids Research, 2017, 45(1):39-53.
[50] Coutinho F H, Zaragoza-Solas A, López-Pérez M, et al. RaFAH:A superior method for virus-host prediction[J]. Patterns, 2021, 2:100274.
[51] Zhang F, Zhou F, Gan R, et al. PHISDetector:A tool to detect diverse in silico phage-host interaction signals for virome studies[J]. BioRxiv, 2020:661074.
[52] Pons J C, Paez-Espino D, Riera G, et al. VPF-Class:Taxonomic assignment and host prediction of uncultivated viruses based on viral protein families[J]. Bioinformatics, 2021, btab026.
[53] Bolduc B, Jang H B, Doulcier G, et al. vConTACT:An iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria[J]. PeerJ, 2017, 5:e3243.
[54] Bin Jang H, Bolduc B, Zablocki O, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks[J]. Nature Biotechnology, 37(6):632-639.
[55] Bland C, Ramsey T L, Sabree F, et al. CRISPR recognition tool (CRT):A tool for automatic detection of clustered regularly interspaced palindromic repeats[J]. BMC Bioinformatics, 2007, 8(1):1-8.
[56] 王光华.掀开土壤生物"暗物质"——土壤病毒的神秘面纱[J].中国科学院院刊, 2017, 32(6):575-583.
[57] Sausset R, Petit M, Gaboriau-Routhiau V, et al. New insights into intestinal phages[J]. Mucosal Immunology, 2020, 13(2):205-215.
[58] Batinovic S, Wassef F, Knowler S A, et al. Bacteriophages in natural and artificial environments[J]. Pathogens, 2019, 8(3):100.
[59] Murray A G, Jackson G A. Viral dynamics:A model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles[J]. Marine Ecology Progress Series, 1992:103-116.
[60] Fancello L, Trape S, Robert C, et al. Viruses in the desert:A metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara[J]. The ISME Journal, 2013, 7(2):359-369.
[61] Knowles B, Silveira C, Bailey B, et al. Lytic to temperate switching of viral communities[J]. Nature, 2016, 531(7595):466.
[62] Weinbauer M G, Brettar I, Höfle M G. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters[J]. Limnology Oceanography, 2003, 48(4):1457-1465.
[63] Stewart F M, Levin B R. The population biology of bacterial viruses:Why be temperate[J]. Theoretical Population Biology, 1984, 26(1):93-117.
[64] Tan D, Hansen M F, de Carvalho L N, et al. High cell densities favor lysogeny:Induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum[J]. The ISME Journal, 2020, 14(7):1731-1742.
[65] Li Y, Sun H, Yang W, et al. Dynamics of bacterial and viral communities in paddy soil with irrigation and urea application[J]. Viruses, 2019, 11(4):347.
[66] Anderson R E, Brazelton W J, Baross J A. The deep viriosphere:Assessing the viral impact on microbial community dynamics in the deep subsurface[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):649-675.
[67] Stanton T B. Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species[J]. Anaerobe, 2007, 13(2):43-49.
[68] Hurwitz B L, U'Ren J M. Viral metabolic reprogramming in marine ecosystems[J]. Current Opinion in Microbiology, 2016, 31:161-168.
[69] Koskella B, Brockhurst M A. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J]. FEMS Microbiology Reviews, 2014, 38(5):916-931.
[70] Stern A, Sorek R. The phage-host arms race:Shaping the evolution of microbes[J]. Bioessays, 2011, 33(1):43-51.
[71] Ducklow H W, Steinberg D K, Buesseler K O. Upper ocean carbon export and the biological pump[J]. Oceanography, 2001, 14(4):50-58.
[72] Suttle C A. Viruses in the sea[J]. Nature, 2005, 437(7057):356-361.
[73] Wilhelm S W, Suttle C A. Viruses and Nutrient Cycles in the Sea Viruses play critical roles in the structure and function of aquatic food webs[J]. Bioscience, 1999, 49(10):781-788.
[74] Weinbauer M G, Rassoulzadegan F. Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2004, 6(1):1-11.
[75] Kuzyakov Y, Mason-Jones K. Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions[J]. Soil Biology and Biochemistry, 2018, 127:305-317.
[76] Monier A, Chambouvet A, Milner D S, et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton[J]. Proceedings of the National Academy of Sciences, 2017, 114(36):E7489-E7498.
[77] Roux S, Brum J R, Dutilh B E, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses[J]. Nature, 2016, 537(7622):689-693.
[78] Breitbart M, Thompson L R, Suttle C A, et al. Exploring the vast diversity of marine viruses[J]. Oceanography, 2007, 20(2):135-139.
[79] Mann N H, Cook A, Millard A, et al. Marine ecosystems:Bacterial photosynthesis genes in a virus[J]. Nature, 2003, 424(6950):741.
[80] Rohwer F, Segall A M. A century of phage lessons[J]. Nature, 2015, 528(7580):46-47.
[81] Adriaenssens E M, Van Zyl L, De Maayer P, et al. Metagenomic analysis of the viral community in Namib Desert hypoliths[J]. Environmental Microbiology, 2015, 17(2):480-495.
[82] Huang D, Yu P, Ye M, et al. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress[J]. Microbiome, 2021, 9:150.
[83] Sharon I, Battchikova N, Aro E-M, et al. Comparative metagenomics of microbial traits within oceanic viral communities[J]. The ISME Journal, 2011, 5:1178-1190.
[84] Shaffer M, Borton M A, McGivern B B, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function[J]. Nucleic Acids Research, 2020, 48(16):8883-8900.
[85] 李升伟.噬菌体:一个世纪的历史回顾[J].世界科学, 2016(1):42-43.
[86] Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Methods, 2019, 25(5):730-733.
[87] García P, Rodríguez L, Rodríguez A, et al. Food biopreservation:Promising strategies using bacteriocins, bacteriophages and endolysins[J]. Trends in Food Science & Technology, 2010, 21(8):373-382.
[88] 蔡天舒,王静雪,林洪,等.金黄色葡萄球菌噬菌体的生物学特性及其在牛奶中的抑菌应用[J].食品科学, 2013, 34(11):147-151.
[89] 刘婷.假单胞菌噬菌体的筛选及在冷却羊肉中的应用[D].呼和浩特:内蒙古农业大学, 2020.
[90] 王志丽.中华鳖养殖中芽孢杆菌,嗜水气单胞菌及其噬菌体的分离和性质研究[D].保定:河北大学, 2012.
[91] Li Z, Zhang J, Li X, et al. Efficiency of a bacteriophage in controlling vibrio infection in the juvenile sea cucumber Apostichopus japonicus[J]. Aquaculture, 2016, 451:345-352.
[92] 杨扬.应用噬菌体防治弧菌引发的刺参腐皮综合征[D].大连:大连理工大学, 2013.
[93] 李新宇,孜力汗,张宝会,等.噬菌体在水产养殖中应用的研究进展[J].中国农业科技导报, 2016, 18(5):187-192.
[94] Wang X, Wei Z, Yang K, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12):1513-1520.
[95] Fujjwara A, Fujjsawa M, Hamasaki R, et al. Biocontrol of ralstonia solanacearum by treatment with lytic bacteriophages[J]. Applied and Environmental Microbiology, 2011, 77(12):4155-4162.
[96] Chae J C, Hung N B, Yu S M, et al. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice[J]. Journal of Microbiology and Biotechnology, 2014, 24(6):740-747.