[1] 徐明岗,卢昌艾,张文菊,等.我国耕地质量状况与提升对策[J].中国农业资源与区划, 2016, 37(7):8-14.
[2] 沈仁芳,王超,孙波."藏粮于地、藏粮于技"战略实施中的土壤科学与技术问题[J].中国科学院院刊, 2018, 33(2):135-144.
[3] 陈印军,方琳娜,杨俊彦.我国农田土壤污染状况及防治对策[J].中国农业资源与区划, 2014, 35(4):1-5.
[4] 范丙全.我国生物肥料研究与应用进展[J].植物营养与肥料学报, 2017, 23(6):1602-1613.
[5] Macik M, Gryta A, Frac M. Biofertilizers in agriculture:An overview on concepts, strategies and effects on soil microorganisms[J]. Advances in Agronomy, 2020, 162:31-87.
[6] 李俊,姜昕,马鸣超,等.我国微生物肥料产业需求与技术创新[J].中国土壤与肥料, 2019(2):1-5.
[7] Rillig M C, Aguilar-Trigueros C A, Camenzind T, et al. Why farmers should manage the arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2019, 222(3):1171-1175.
[8] Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology[J]. Science, 2020, 367:eaba1223.
[9] 李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社, 2001.
[10] Smith S E, Read D J. Mycorrhizal symbiosis[M]. London:Academic Press, 2008.
[11] Wang W X, Shi J C, Xie Q J, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Molecular Plant, 2017, 10(9):1147-1158.
[12] Li T, Hu Y J, Hao Z P, et al. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2013, 197(2):617-630.
[13] Smith S E, Facelli E, Pope S, et al. Plant performance in stressful environments:Interpreting new and established knowledge of the roles of arbuscular mycorrhizas[J]. Plant and Soil, 2009, 326(1/2):3-20.
[14] Ivanov S, Fedorova E E, Limpens E, et al. Rhizobiumlegume symbiosis shares an exocytotic pathway required for arbuscule formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(81):8316-8321.
[15] Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. ISME Journal, 2018, 12(10):2339-2351.
[16] Rillig M C, Aguilar-Trigueros C A, Bergmann J, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation[J]. New Phytologist, 2015, 205(4):1385-1388.
[17] Morris E K, Morris D J P, Vogt S, et al. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi[J]. ISME Journal, 2019, 13(7):1639-1646.
[18] Barto E K, Weidenhamer J D, Cipollini D, et al. Fungal superhighways:Do common mycorrhizal networks enhance below ground communication?[J]. Trends in Plant Science, 2012, 17(11):633-637.
[19] Veresoglou S D, Chen B D, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling[J]. Soil Biology Biochemistry, 2012, 46:53-62.
[20] Terrer C, Vicca S, Hungate B A, et al. Mycorrhizal association as a primary control of the CO2 fertilization effect[J]. Science, 2016, 353(6294):72-74.
[21] Martínez-García L B, De Deyn G B, Pugnaire F I, et al. Symbiotic soil fungi enhance ecosystem resilience to climate change[J]. Global Change Biology, 2017, 23(12):5228-5236.
[22] Wang F Y. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration:Mechanisms and applications[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(20):1901-1957.
[23] 陈保冬,于萌,郝志鹏,等.丛枝菌根真菌应用技术研究进展[J].应用生态学报, 2019, 30(3):1035-1046.
[24] Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses[J]. Nature Reviews Microbiology, 2020, 18(11):649-660.
[25] Chen M, Arato M, Borghi, et al. Beneficial services of arbuscular mycorrhizal fungi-from ecology to application[J]. Frontiers in Plant Science, 2018, 9:1270.
[26] Rillig M C, Sosa-Hernández M A, Roy J, et al. Towards an integrated mycorrhizal technology:Harnessing mycorrhiza for sustainable intensification in agriculture[J]. Frontiers in Plant Science, 2016, 7:1625.
[27] Li H, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3):536-543.
[28] Li X L, George E, Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA-mycorrhizal white clover fertilized with ammonium[J]. New Phytologist, 1991, 119(3):397-404.
[29] Limpens E, Geurts R. Transcriptional regulation of nutrient exchange in arbuscular mycorrhizal symbiosis[J]. Molecular Plant, 2018, 11(12):1421-1423.
[30] Garcia K, Chasman D, Roy S, et al. Physiological responses and gene co-expression network of mycorrhizal roots under K+ deprivation[J]. Plant Physiology, 2017, 173(3):1811-1823.
[31] González-Guerrero M, Azcon-Aguilar C, Mooney M, et al. Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family[J]. Fungal Genetics and Biology, 2005, 42(2):130-140.
[32] Wipf D, Krajinski F, van Tuinen D, et al. Trading on the arbuscular mycorrhiza market:From arbuscules to common mycorrhizal networks[J]. New Phytologist, 2019, 223(3):1127-1142.
[33] 李涛,陈保冬.丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J].植物生态学报, 2012, 36(9):973-981.
[34] Evelin H, Devi T S, Gupta S, et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis:Current understanding and new challenges[J]. Frontiers in Plant Science, 2019, 10:470.
[35] Li T, Lin G, Zhang X, et al. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance[J]. Mycorrhiza, 2014, 24(8):595-602.
[36] Xu L J, Li T, Wu Z X, et al. Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway[J]. Applied Soil Ecology, 2018, 125:213-221.
[37] 陈保冬,张莘,伍松林,等.丛枝菌根影响土壤-植物系统中重金属迁移、转化和累积过程的机制及其生态应用[J].岩矿测试, 2019, 38(1):1-25.
[38] Chen B D, Xiao X Y, Zhu Y G, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contrary effects on phosphorus and arsenic acquisition by Medicago sativa Linn[J]. Science of the Total Environment, 2007, 379:226-234.
[39] Li J L, Sun Y Q, Zhang X, et al. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization[J]. Chemosphere, 2018, 209:392-400.
[40] Zhang X, Ren B H, Wu S L, et al. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil[J]. Chemosphere, 2015, 119:224-230.
[41] Li J L, Chen B D, Zhang X, et al. Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions[J]. Journal of Hazardous Materials, 2021, 413:125390.
[42] Wu S L, Zhang X, Sun Y Q, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science and Technology, 2015, 49(24):14036-14047.
[43] Chen B D, Nayuki K, Kuga Y, et al. Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis[J]. Microbes and Environments, 2018, 33(3):257-263.
[44] Hao Z P, Xie W, Chen B D. Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation[J]. Viruses, 2019, 11(6):534.
[45] Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance:Trichoderma, mycorrhizal and endophytic fungi[J]. Frontiers in Microbiology, 2020, 11:992.
[46] Harrier L A, Watson C A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems[J]. Pest Management Science, 2004, 60(2):149-157.
[47] Schouteden N, De Waele D, Panis B, et al. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes:A review of the mechanisms involved[J]. Frontiers in Microbiology, 2015, 6:1280.
[48] Hao Z P, Fayolle L, van Tuinen D, et al. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine[J]. Journal of Experimental Botany, 2012, 63(10):3657-3672.
[49] da Silva J C P, de Medeiros F H V, Campos V P. Building soil suppressiveness against plant-parasitic nematodes[J]. Biocontrol Science and Technology, 2018, 28(5):423-445.
[50] Xie W, Hao Z P, Yu M, et al. Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis[J]. Plant and Soil, 2019, 439(1/2):243-257.
[51] 李芳,徐丽娇,谢伟,等.菌根化育苗对玉米生长和养分吸收的影响[J].植物营养与肥料学报, 2020, 26(1):42-50.
[52] Rouphael Y, Franken P, Schneider C, et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Scientia Horticulturae, 2015, 196:91-108.
[53] Ramírez-Flores M R, Perez-Limon S, Li M, et al. The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation[J]. eLife, 2020, 9:e61701.
[54] Basiru S, Mwanza H P, Hijri M. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks[J]. Microorganisms, 2021, 9(1):81.
[55] Xie W, Hao Z P, Zhou X F, et al. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress[J]. Mycorrhiza, 2018, 28(3):285-300.
[56] Verbruggen E, van der Heijden M G A, Rillig M C, et al. Mycorrhizal fungal establishment in agricultural soils:Factors determining inoculation success[J]. New Phytologist, 2013, 197(4):1104-1109.
[57] Bender S F, Schlaeppi K, Held A, et al. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields[J]. Agriculture, Ecosystems and Environment, 2019, 273:13-24.
[58] Frew A. Contrasting effects of commercial and native arbuscular mycorrhizal fungal inoculants on plant biomass allocation, nutrients, and phenolics[J]. Plants, People, Planet, 2021, 3(5):538-540.
[59] Wehner J, Antunes P M, Powell J R, et al. Plant pathogen protection by arbuscular mycorrhizas:A role for fungal diversity[J]. Pedobiologia, 2010, 53(3):197-201.
[60] Lekberg Y, Koide R T. Is plant performance limited by abundance of arbuscular mycorrhizal fungi?A metaanalysis of studies published between 1988 and 2003[J]. New Phytologist, 2005, 168(1):189-204.
[61] Pellegrino E, Bedini S, Avio L, et al. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil[J]. Soil Biology and Biochemistry, 2011, 43(2):367-376.
[62] Köhl L, Lukasiewicz C E, van der Heijden M G A. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils[J]. Plant, Cell and Environment, 2016, 39(1):136-146.
[63] Munkvold L, Kjøller R, Vestberg M, et al. High functional diversity within species of arbuscular mycorrhizal fungi[J]. New Phytologist, 2004, 164(2):357-364.
[64] Feddermann N, Finlay R, Boller T, et al. Functional diversity in arbuscular mycorrhiza-the role of gene expression, phosphorous nutrition and symbiotic efficiency[J]. Fungal Ecology, 2010, 3(1):1-8.
[65] Niwa R, Koyama T, Sato T, et al. Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses[J]. Scientific Reports, 2018, 8(1):1-11.
[66] Berruti A, Lumini E, Balestrini R, et al. Arbuscular mycorrhizal fungi as natural biofertilizers:Let's benefit from past successes[J]. Frontiers in Microbiology, 2016, 6:1559.
[67] de Novais C B, Sbrana C, da Conceição Jesus E, et al. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium[J]. Mycorrhiza, 2020, 30(2/3):389-396.
[68] Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210):189-194.
[69] Acha A J, Vieira H D. Digital image processing of coated perennial-soybean seeds and correlation with physiological atributes[J]. Journal of Seed Science, 2020, 42:e202042004.
[70] O'Callaghan M. Microbial inoculation of seed for improved crop performance:Issues and opportunities[J]. Applied Microbiology and Biotechnology, 2016, 100(13):5729-5746.
[71] Gianinazzi S, Gollotte A, Binet M N, et al. Agroecology:The key role of arbuscular mycorrhizas in ecosystem services[J]. Mycorrhiza, 2010, 20(8):519-530.
[72] 闫飞扬,段廷玉,张峰.农业管理措施对AM真菌功能影响的研究进展[J].草业科学, 2014, 31(12):2230-2241.
[73] Lehmann A, Barto E K, Powell J R, et al. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives-a meta-analysis on studies from 1981 to 2010[J]. Plant and Soil, 2012, 355(1/2):231-250.
[74] Zhu Y G, Smith S E, Barritt A R, et al. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars[J]. Plant and Soil, 2001, 237(2):249-255.
[75] Chu Q, Zhang L, Zhou J, et al. Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway[J]. Plant and Soil, 2020, 449:357-371.
[76] Jacott C N, Murray J D, Ridout C J. Trade-offs in arbuscular mycorrhizal symbiosis:Disease resistance, growth responses and perspectives for crop breeding[J]. Agronomy, 2017, 7(4):75.
[77] Thirkell T J, Charters M D, Elliott A J, et al. Are mycorrhizal fungi our sustainable saviours?Considerations for achieving food security[J]. Journal of Ecology, 2017, 105(4):921-929.
[78] Cofre N, Becerra A G, Marro N, et al. Soybean growth and foliar phosphorus concentration mediated by arbuscular mycorrhizal fungi from soils under different no-till cropping systems[J]. Rhizosphere, 2020, 16:100254.
[79] Deng Y, Feng G, Chen X, et al. Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat-maize cropping system[J]. Field Crops Research, 2017, 209:1-9.
[80] Guzman A, Montes M, Hutchins L, et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape[J]. New Phytologist, 2021, 231(1):447-459.
[81] Gosling P, Jones J, Bending G D. Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management[J]. Mycorrhiza, 2016, 26(1):77-83.
[82] Orio A G A, Brucher E, Ducasse D A. Switching between monocot and dicot crops in rotation schemes of Argentinean productive fields results in an increment of arbuscular mycorrhizal fungi diversity[J]. Applied Soil Ecology, 2016, 98:121-131.
[83] Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis[J]. Science, 2011, 333(6044):880-882.
[84] Bonneau L, Huguet S, Wipf D, et al. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula[J]. New Phytologist, 2013, 199(1):188-202.
[85] Mueller L M, Harrison M J. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology, 2019, 50:132-139.
[86] Nouri E, Breuillin-Sessoms F, Feller U, et al. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida[J]. PLoS One, 2014, 9(3):e90841.
[87] 张旭红,林爱军,崔玉静.丛枝菌根真菌对百菌清引起的旱稻(Oryza sativa L.)毒性的影响[J].环境科学, 2007, 28(5):1107-1112.
[88] Merryweather J, Fitter A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field[J]. New Phytologist, 1996, 132(2):307-311.
[89] Welc M, Ravnskov S, Kieliszewska-Rokicka B, et al. Suppression of other soil microorganisms by mycelium of arbuscular mycorrhizal fungi in root-free soil[J]. Soil Biology and Biochemistry, 2010, 42(9):1534-1540.
[90] Rabab A M, Reda E A. Impact of Ridomil, Bavistin and Agrothoate on arbuscular mycorrhizal fungal colonization, biochemical changes and potassium content of cucumber plants[J]. Ecotoxicology, 2019, 28:487-498.
[91] Hage-Ahmed K, Rosner K, Steinkellner S. Arbuscular mycorrhizal fungi and their response to pesticides[J]. Pest Management Science, 2019, 75(3):583-590.
[92] O'Herlihy E A, Duffy E M, Cassells A C. The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants[J]. Folia Geobotanica, 2003, 38(2):201-207.
[93] Hu J, Yang A, Zhu A, et al. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China[J]. Journal of Microbiology, 2015, 53(7):454-461.
[94] Moitinho M R, Fernandes C, Truber P V, et al. Arbuscular mycorrhizal fungi and soil aggregation in a no-tillage system with crop rotation[J]. Journal of Plant Nutrition and Soil Science, 2020, 183(4):482-491.
[95] Zhang S, Lehmann A, Zheng W, et al. Arbuscular mycorrhizal fungi increase grain yields:A meta-analysis[J]. New Phytologist, 2019, 222(1):543-555.
[96] Kobae Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions[J]. Frontiers in Environmental Science, 2019, 6:159.
[97] Elliott A J, Daniell T J, Cameron D D, et al. A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients[J]. Plants, People, Planet, 2021, 3(5):588-599.
[98] Cavagnaro T R, Bender S F, Asghari H R, et al. The role of arbuscular mycorrhizas in reducing soil nutrient loss[J]. Trends in Plant Science, 2015, 20(5):283-290.
[99] Ferlian O, Biere A, Bonfante P, et al. Growing research networks on mycorrhizae for mutual benefits[J]. Trends in Plant Science, 2018, 23(1):975-984.
[100] Powell J R, Rillig M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4):1059-1075.
[101] Pickles B J, Truong C, Watts-Williams S J, et al. Mycorrhizas for a sustainable world[J]. New Phytologist, 2020, 225(3):1065-1069.
[102] Sosa-Hernández M A, Leifheit E F, Ingraffia R, et al. Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture:A solution right under our Feet[J]. Frontiers in Microbiology, 2019, 10:744.
[103] Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175.
[104] Sugiura Y, Akiyama R, Tanaka S, et al. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41):25779-25788.
[105] Srivastava S, Johny L, Adholeya A. Review of patents for agricultural use of arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2021, 31:127-136.