[1] Zhang H, Feng X, Larssen T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9):1183-1188.
[2] Boening D W. Ecological effects, transport, and fate of mercury:A general review[J]. Chemosphere, 2000, 40(12):1335-1351.
[3] Wang X, Lin C J, Yuan W, et al. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China[J]. Atmospheric Chemistry and Physics, 2016, 16(17):11125-11143.
[4] Feng X, Ping L I, Qiu G, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China[J]. Environmental Science & Technology, 2008, 42(1):326-332.
[5] Zhang H, Feng R, Larssen T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain[J]. Environmental Science & Technology, 2010, 44(12):4499-4504.
[6] 黄中伟.稻田生态系统中总汞和甲基汞的分布研究:以河南省稻粒产区信阳市为例[D].焦作:河南理工大学, 2012.
[7] Li P, Feng X B, Qiu G L, et al. Mercury pollution in Asia:A review of the contaminated sites[J]. Journal of Hazardous Materials, 2009, 168(2/3):591-601.
[8] Carey A, Lombi E, Donner E, et al. A review of recent developments in the speciation and location of arsenic and selenium in rice grain[J]. Analytical and Bioanalytical Chemistry, 2012, 402(10):3275-3286.
[9] Combs G F, Selenium in global food systems[J]. British Journal of Nutrition, 2001, 85(5):517-547.
[10] Sun G X, Liu X, Williams P N, et al. Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2010, 44(17):6706-6711.
[11] Williams P N, Lombi E, Sun G X, et al. Selenium characterization in the global rice supply chain[J]. Environmental Science & Technology, 2009, 43(15):6024-6030.
[12] Sun G X, Tom V D W, Alava P, et al. Bioaccessibility of selenium from cooked rice as determined in a simulator of the human intestinal tract (SHIME)[J]. Journal of the Science of Food & Agriculture, 2017, 97(11):3540-3545.
[13] 陈松灿,孙国新,陈正,等.植物硒生理及与重金属交互的研究进展[J].植物生理学报, 2014(5):612-624.
[14] Sun G X, Meharg A A, Li G, et al. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?[J]. Scientific Reports, 2016, doi:https://doi.org/10.1038/srep20953.
[15] Wang Z, Gao Y. Biogeochemical cycling of selenium in Chinese environments[J]. Applied Geochemistry, 2001, 16:1345-1351.
[16] Pirrone N, Mahaffey K R. Where we stand on mercury pollution and its health effects on regional and global scales[M]. Dynamics of Mercury Pollution on Regional and Global Scales:Atmospheric Processes and Human Exposures Around the World, Boston:Springer, 2005:1-21.
[17] 文雪琴,迟清华.中国汞的地球化学空间分布特征[J].地球化学, 2007, 36(6):621.
[18] SEPAC, The background levels of element in soil in China[M]. Beijing:Chinese Environmental Science Press, 1990.
[19] Zheng Y M, Liu Y R, Hu H Q, et al. Mercury in soils of three agricultural experimental stations with long-term fertilization in China[J]. Chemosphere, 2008, 72(9):1274-1278.
[20] Zhang H, Chen J, Zhu L, et al. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong province, south China[J]. Journal of Geochemical Exploration, 2014, 144:312-319.
[21] Pacyna E G, Pacyna J M, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499.
[22] Streets D G, Devane M K, Lu Z, et al. All-time releases of mercury to the atmosphere from human activities[J]. Environmental Science & Technology, 2011, 45(24):10485-10491.
[23] Streets D G, Zhang Q, Wu Y. Projections of global mercury emissions in 2050[J]. Environmental Science & Technology, 2009, 43(8):2983-2988.
[24] 孙国新,李媛,李刚,等.我国土壤低硒带的气候成因研究[J].生物技术进展, 2017, 7(5):387-394.
[25] 中华人民共和国地方病与环境图集编纂委员会.中华人民共和国地方病与环境图集[M].北京:科学出版社, 1989.
[26] Blazina T, Sun Y, Voegelin A, et al. Terrestrial selenium distribution in China is potentially linked to monsoonal climate[J]. Nature Communications, 2014, 5:4717.
[27] Jones G D, Droz B, Greve P, et al. Selenium deficiency risk predicted to increase under future climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11):2848-2853.
[28] Fu X, Feng X, Zhu W, et al. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China[J]. Environmental Pollution, 2010, 158(6):2324-2333.
[29] Pan L, Lin C J, Carmichael G R, et al. Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system[J]. Science of the Total Environment, 2010, 408(16):3277-3291.
[30] Xiao Z F, Sommar J, Lindqvist O, et al. Atmospheric mercury deposition on Fanjing mountain nature reserve, Guizhou, China[J]. Chemosphere, 1998, 36(10):2191-2200.
[31] Liu F, Cheng, H, Yang K, et al., Characteristics and influencing factors of mercury exchange flux between soil and air in Guangzhou City[J]. Journal of Geochemical Exploration, 2014, 139:115-121.
[32] Zhang Z Y, Li G, Yang L, et al. Mercury distribution in the surface soil of China is potentially driven by precipitation, vegetation cover and organic matter[J]. Environmental Sciences Europe, 2020, 32(1):89-99.
[33] Amyot M, Mierle G, Lean D R S, et al. Sunlight-induced formation of dissolved gaseous mercury in lake waters[J]. Environmental Science & Technology, 1994, 28(13):2366-2371.
[34] Shanley J B, Engle M A, Scholl M, et al. High mercury wet deposition at a "clean air" site in Puerto Rico[J]. Environmental Science & Technology, 2015, 49(20):12474-12482.
[35] Swartzendruber P C, Jaffe D A, Prestbo E M, et al. Observations of reactive gaseous mercury in the free troposphere at the mount bachelor observatory[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D24):D24301.
[36] Driscoll C T, Mason R P, Chan H M, et al. Mercury as a global pollutant:Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10):4967-4983.
[37] Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J]. Ambio, 2007, 36(1):19-32.
[38] Holmes C D, Krishnamurthy N P, Caffrey J M, et al. Thunderstorms increase mercury wet deposition[J]. Environmental Science & Technology, 2016, 50(17):9343-9350.
[39] Shi J, Wen K, Cui L. Patterns and trends of high-impact weather in China during 1959-2014[J]. Natural Hazards and Earth System Sciences, 2016, 16(3):855-869.
[40] Blazina T, Laderach A, Jones G D, et al. Marine primary productivity as a potential indirect source of selenium and other trace elements in atmospheric deposition[J]. Environmental Science & Technology, 2017, 51(1):108-118.
[41] Amouroux D, Liss P S, Tessier E, et al. Role of oceans as biogenic sources of selenium[J]. Earth and Planetary Science Letters, 2001, 189(3-4):277-283.
[42] Wen H, Carignan J. Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens[J]. Environmental Pollution, 2009, 157(10):2790-2797.
[43] 朱发庆,谭见安.我国降水、降尘中硒、碘、氟的研究[J].环境科学学报, 1988, 8(4):46-55.
[44] Ross H B. An atmospheric selenium budget for the region 30° N to 90° N[J]. Tellus Series B:Chemical & Physical Meteorology, 1985, 37(2):78-90.
[45] Zhang L, Wright L P, Blanchard P. A review of current knowledge concerning dry deposition of atmospheric mercury[J]. Atmospheric Environment, 2009, 43(37):5853-5864.
[46] Kuiken T, Gustin M, Zhang H, et al. Mercury emission from terrestrial background surfaces in the eastern USA. II:Air/surface exchange of mercury within forests from south Carolina to New England[J]. Applied Geochemistry, 2008, 23(3):356-368.
[47] Gustin M S, Ericksen J A, Schorran D E, et al. Application of controlled mesocosms for understanding mercury air-soil-plant exchange[J]. Environmental Science & Technology, 2004, 38(22):6044-6050.
[48] Wang X, Yuan W, Feng X. Global review of mercury biogeochemical processes in forest ecosystems[J]. Progress in Chemistry, 2017, 29(9):970-980.
[49] Zhou J, Feng X, Liu H, et al. Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of southwestern China[J]. Atmospheric Environment, 2013, 81:364-372.
[50] Fu X W, Zhang H, Yu B, et al. Observations of atmospheric mercury in China:A critical review[J]. Atmospheric Chemistry and Physics, 2015, 15(16):9455-9476.
[51] 杨光,孙涛,安思危,等.重庆缙云山4种典型植被覆盖下汞的释放通量及影响因素[J].环境科学, 2017, 38(11):4774-4781.
[52] Kuiken T, Zhang H, Gustin M, et al. Mercury emission from terrestrial background surfaces in the eastern USA. Part I:Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year[J]. Applied Geochemistry, 2008, 23(3):345-355.
[53] Chau Y K, Wong P T S, Silverberg B A, et al. Methylation of selenium in the aquatic environment[J]. Science, 1976, 192(4244):1130-1131.
[54] 王刚,涂其军,马宏超,等.焉耆盆地富硒土壤地球化学特征及成因探讨[J].新疆地质, 2019, 37(4):473-478.
[55] Wang X, Yuan W, Lin C J, et al. Climate and vegetation as primary drivers for global mercury storage in surface soil[J]. Environmental Science & Technology, 2019, 53(18):10665-10675.
[56] Obrist D, Pearson C, Webster J, et al. A synthesis of terrestrial mercury in the western united states:Spatial distribution defined by land cover and plant productivity[J]. Science of the Total Environment, 2016, 568(15):522-535.
[57] Mauclair C, Layshock J, Carpi A. Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces[J]. Applied Geochemistry, 2008, 23(3):594-601.
[58] Pegoraro E F, Mauritz M E, Ogle K, et al. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after ten years of experimental permafrost warming[J]. Global Change Biology, 2021, 27(6):1293-1308.
[59] Sun S, Kang S, Huang J, et al. Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau[J]. Environmental Science and Pollution Research, 2017, 24(17):15078-15088.
[60] Johnsson L. Selenium uptake by plants as a function of soil type, organic matter content and pH[J]. Plant and Soil, 1991, 133(1):57-64.
[61] Kausch M, Ng P, Ha J, et al. Soil-aggregate-scale heterogeneity in microbial selenium reduction[J]. Vadose Zone Journal, 2012, 11(2):1-11.
[62] Cooke T D, Bruland K W. Aquatic chemistry of selenium:Evidence of biomethylation[J]. Environmental Science & Technology, 1987, 21(12):1214-1219.
[63] Hansen D, Duda P J, Zayed A, et al. Selenium removal by constructed wetlands:Role of biological volatilization[J]. Environmental Science & Technology, 1998, 32(5):591-597.