专题:土壤生态学

中国表层土壤汞和硒分布空间异质性的因素分析

  • 孙国新 ,
  • 张召阳
展开
  • 1. 中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085;
    2. 中国科学院大学, 北京 100049
孙国新,研究员,研究方向为土壤重金属污染修复及元素生物地球化学循环,电子信箱:gxsun@rcees.ac.cn

收稿日期: 2021-06-28

  修回日期: 2021-11-21

  网络出版日期: 2022-03-25

基金资助

中国科学院第二次青藏高原综合考察研究项目(2019QZKK0306)

Spatial distribution heterogeneity of Hg and Se in surface soil in China and its plausible reason

  • SUN Guoxin ,
  • ZHANG Zhaoyang
Expand
  • 1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-06-28

  Revised date: 2021-11-21

  Online published: 2022-03-25

摘要

在大尺度(中国)范围内,季风和降水等因素可能对土壤中挥发性元素汞和硒的含量具有显著影响,但影响表层土壤中汞和硒差异的关键因子及其贡献率仍未知。分析了干、湿沉降,微生物挥发作用对土壤中汞和硒积累的贡献,结果显示表层土壤汞和硒的积累是一个动态的过程。在全国尺度上,湿沉降对表层土壤中硒的贡献率达到91.5%,对汞的贡献率为49.4%;植被覆盖指数对土壤中汞的贡献为23.4%。由于汞和硒在大气中存在方式不同,汞以不溶于水的元素汞为主,而硒以易溶于水的甲基硒为主,干、湿沉降对二者的贡献有明显差异。

本文引用格式

孙国新 , 张召阳 . 中国表层土壤汞和硒分布空间异质性的因素分析[J]. 科技导报, 2022 , 40(3) : 121 -129 . DOI: 10.3981/j.issn.1000-7857.2022.03.011

Abstract

At a large scale (China),climatic factors such as monsoon and precipitation probably provide significant contributions to spatial distribution of mercury (Hg) and selenium (Se) in soil considering their volatile properties.However,it is still unclear which factors influence Hg and Se accumulations in surface soil and what their contribution rates are.This study mainly analyzes the contributions of dry and wet depositions and volatilization to accumulations of Hg and Se in surface soil,and argues that the accumulation of Hg and Se in surface soil is a dynamic process.At a national scale,the contribution rates of wet deposition to surface soil Se and Hg are 91.5% and 49.4%,respectively.The contribution of normalized difference vegetation index (NDVI) to soil Hg is 23.4%.Since mercury and selenium exist in different ways in the atmosphere,Hg is dominated by insoluble Hg0,while Se is dominated by soluble methylated Se.The contributions of dry and wet depositions to Hg and Se are significantly different.This study systematically presents the climatic factors affecting the distributions of Hg and Se in surface soil,and has important guiding significance for comprehensive understanding of the biogeochemical cycles of Hg and Se.

参考文献

[1] Zhang H, Feng X, Larssen T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9):1183-1188.
[2] Boening D W. Ecological effects, transport, and fate of mercury:A general review[J]. Chemosphere, 2000, 40(12):1335-1351.
[3] Wang X, Lin C J, Yuan W, et al. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China[J]. Atmospheric Chemistry and Physics, 2016, 16(17):11125-11143.
[4] Feng X, Ping L I, Qiu G, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China[J]. Environmental Science & Technology, 2008, 42(1):326-332.
[5] Zhang H, Feng R, Larssen T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain[J]. Environmental Science & Technology, 2010, 44(12):4499-4504.
[6] 黄中伟.稻田生态系统中总汞和甲基汞的分布研究:以河南省稻粒产区信阳市为例[D].焦作:河南理工大学, 2012.
[7] Li P, Feng X B, Qiu G L, et al. Mercury pollution in Asia:A review of the contaminated sites[J]. Journal of Hazardous Materials, 2009, 168(2/3):591-601.
[8] Carey A, Lombi E, Donner E, et al. A review of recent developments in the speciation and location of arsenic and selenium in rice grain[J]. Analytical and Bioanalytical Chemistry, 2012, 402(10):3275-3286.
[9] Combs G F, Selenium in global food systems[J]. British Journal of Nutrition, 2001, 85(5):517-547.
[10] Sun G X, Liu X, Williams P N, et al. Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2010, 44(17):6706-6711.
[11] Williams P N, Lombi E, Sun G X, et al. Selenium characterization in the global rice supply chain[J]. Environmental Science & Technology, 2009, 43(15):6024-6030.
[12] Sun G X, Tom V D W, Alava P, et al. Bioaccessibility of selenium from cooked rice as determined in a simulator of the human intestinal tract (SHIME)[J]. Journal of the Science of Food & Agriculture, 2017, 97(11):3540-3545.
[13] 陈松灿,孙国新,陈正,等.植物硒生理及与重金属交互的研究进展[J].植物生理学报, 2014(5):612-624.
[14] Sun G X, Meharg A A, Li G, et al. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?[J]. Scientific Reports, 2016, doi:https://doi.org/10.1038/srep20953.
[15] Wang Z, Gao Y. Biogeochemical cycling of selenium in Chinese environments[J]. Applied Geochemistry, 2001, 16:1345-1351.
[16] Pirrone N, Mahaffey K R. Where we stand on mercury pollution and its health effects on regional and global scales[M]. Dynamics of Mercury Pollution on Regional and Global Scales:Atmospheric Processes and Human Exposures Around the World, Boston:Springer, 2005:1-21.
[17] 文雪琴,迟清华.中国汞的地球化学空间分布特征[J].地球化学, 2007, 36(6):621.
[18] SEPAC, The background levels of element in soil in China[M]. Beijing:Chinese Environmental Science Press, 1990.
[19] Zheng Y M, Liu Y R, Hu H Q, et al. Mercury in soils of three agricultural experimental stations with long-term fertilization in China[J]. Chemosphere, 2008, 72(9):1274-1278.
[20] Zhang H, Chen J, Zhu L, et al. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong province, south China[J]. Journal of Geochemical Exploration, 2014, 144:312-319.
[21] Pacyna E G, Pacyna J M, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499.
[22] Streets D G, Devane M K, Lu Z, et al. All-time releases of mercury to the atmosphere from human activities[J]. Environmental Science & Technology, 2011, 45(24):10485-10491.
[23] Streets D G, Zhang Q, Wu Y. Projections of global mercury emissions in 2050[J]. Environmental Science & Technology, 2009, 43(8):2983-2988.
[24] 孙国新,李媛,李刚,等.我国土壤低硒带的气候成因研究[J].生物技术进展, 2017, 7(5):387-394.
[25] 中华人民共和国地方病与环境图集编纂委员会.中华人民共和国地方病与环境图集[M].北京:科学出版社, 1989.
[26] Blazina T, Sun Y, Voegelin A, et al. Terrestrial selenium distribution in China is potentially linked to monsoonal climate[J]. Nature Communications, 2014, 5:4717.
[27] Jones G D, Droz B, Greve P, et al. Selenium deficiency risk predicted to increase under future climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11):2848-2853.
[28] Fu X, Feng X, Zhu W, et al. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China[J]. Environmental Pollution, 2010, 158(6):2324-2333.
[29] Pan L, Lin C J, Carmichael G R, et al. Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system[J]. Science of the Total Environment, 2010, 408(16):3277-3291.
[30] Xiao Z F, Sommar J, Lindqvist O, et al. Atmospheric mercury deposition on Fanjing mountain nature reserve, Guizhou, China[J]. Chemosphere, 1998, 36(10):2191-2200.
[31] Liu F, Cheng, H, Yang K, et al., Characteristics and influencing factors of mercury exchange flux between soil and air in Guangzhou City[J]. Journal of Geochemical Exploration, 2014, 139:115-121.
[32] Zhang Z Y, Li G, Yang L, et al. Mercury distribution in the surface soil of China is potentially driven by precipitation, vegetation cover and organic matter[J]. Environmental Sciences Europe, 2020, 32(1):89-99.
[33] Amyot M, Mierle G, Lean D R S, et al. Sunlight-induced formation of dissolved gaseous mercury in lake waters[J]. Environmental Science & Technology, 1994, 28(13):2366-2371.
[34] Shanley J B, Engle M A, Scholl M, et al. High mercury wet deposition at a "clean air" site in Puerto Rico[J]. Environmental Science & Technology, 2015, 49(20):12474-12482.
[35] Swartzendruber P C, Jaffe D A, Prestbo E M, et al. Observations of reactive gaseous mercury in the free troposphere at the mount bachelor observatory[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D24):D24301.
[36] Driscoll C T, Mason R P, Chan H M, et al. Mercury as a global pollutant:Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10):4967-4983.
[37] Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J]. Ambio, 2007, 36(1):19-32.
[38] Holmes C D, Krishnamurthy N P, Caffrey J M, et al. Thunderstorms increase mercury wet deposition[J]. Environmental Science & Technology, 2016, 50(17):9343-9350.
[39] Shi J, Wen K, Cui L. Patterns and trends of high-impact weather in China during 1959-2014[J]. Natural Hazards and Earth System Sciences, 2016, 16(3):855-869.
[40] Blazina T, Laderach A, Jones G D, et al. Marine primary productivity as a potential indirect source of selenium and other trace elements in atmospheric deposition[J]. Environmental Science & Technology, 2017, 51(1):108-118.
[41] Amouroux D, Liss P S, Tessier E, et al. Role of oceans as biogenic sources of selenium[J]. Earth and Planetary Science Letters, 2001, 189(3-4):277-283.
[42] Wen H, Carignan J. Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens[J]. Environmental Pollution, 2009, 157(10):2790-2797.
[43] 朱发庆,谭见安.我国降水、降尘中硒、碘、氟的研究[J].环境科学学报, 1988, 8(4):46-55.
[44] Ross H B. An atmospheric selenium budget for the region 30° N to 90° N[J]. Tellus Series B:Chemical & Physical Meteorology, 1985, 37(2):78-90.
[45] Zhang L, Wright L P, Blanchard P. A review of current knowledge concerning dry deposition of atmospheric mercury[J]. Atmospheric Environment, 2009, 43(37):5853-5864.
[46] Kuiken T, Gustin M, Zhang H, et al. Mercury emission from terrestrial background surfaces in the eastern USA. II:Air/surface exchange of mercury within forests from south Carolina to New England[J]. Applied Geochemistry, 2008, 23(3):356-368.
[47] Gustin M S, Ericksen J A, Schorran D E, et al. Application of controlled mesocosms for understanding mercury air-soil-plant exchange[J]. Environmental Science & Technology, 2004, 38(22):6044-6050.
[48] Wang X, Yuan W, Feng X. Global review of mercury biogeochemical processes in forest ecosystems[J]. Progress in Chemistry, 2017, 29(9):970-980.
[49] Zhou J, Feng X, Liu H, et al. Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of southwestern China[J]. Atmospheric Environment, 2013, 81:364-372.
[50] Fu X W, Zhang H, Yu B, et al. Observations of atmospheric mercury in China:A critical review[J]. Atmospheric Chemistry and Physics, 2015, 15(16):9455-9476.
[51] 杨光,孙涛,安思危,等.重庆缙云山4种典型植被覆盖下汞的释放通量及影响因素[J].环境科学, 2017, 38(11):4774-4781.
[52] Kuiken T, Zhang H, Gustin M, et al. Mercury emission from terrestrial background surfaces in the eastern USA. Part I:Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year[J]. Applied Geochemistry, 2008, 23(3):345-355.
[53] Chau Y K, Wong P T S, Silverberg B A, et al. Methylation of selenium in the aquatic environment[J]. Science, 1976, 192(4244):1130-1131.
[54] 王刚,涂其军,马宏超,等.焉耆盆地富硒土壤地球化学特征及成因探讨[J].新疆地质, 2019, 37(4):473-478.
[55] Wang X, Yuan W, Lin C J, et al. Climate and vegetation as primary drivers for global mercury storage in surface soil[J]. Environmental Science & Technology, 2019, 53(18):10665-10675.
[56] Obrist D, Pearson C, Webster J, et al. A synthesis of terrestrial mercury in the western united states:Spatial distribution defined by land cover and plant productivity[J]. Science of the Total Environment, 2016, 568(15):522-535.
[57] Mauclair C, Layshock J, Carpi A. Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces[J]. Applied Geochemistry, 2008, 23(3):594-601.
[58] Pegoraro E F, Mauritz M E, Ogle K, et al. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after ten years of experimental permafrost warming[J]. Global Change Biology, 2021, 27(6):1293-1308.
[59] Sun S, Kang S, Huang J, et al. Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau[J]. Environmental Science and Pollution Research, 2017, 24(17):15078-15088.
[60] Johnsson L. Selenium uptake by plants as a function of soil type, organic matter content and pH[J]. Plant and Soil, 1991, 133(1):57-64.
[61] Kausch M, Ng P, Ha J, et al. Soil-aggregate-scale heterogeneity in microbial selenium reduction[J]. Vadose Zone Journal, 2012, 11(2):1-11.
[62] Cooke T D, Bruland K W. Aquatic chemistry of selenium:Evidence of biomethylation[J]. Environmental Science & Technology, 1987, 21(12):1214-1219.
[63] Hansen D, Duda P J, Zayed A, et al. Selenium removal by constructed wetlands:Role of biological volatilization[J]. Environmental Science & Technology, 1998, 32(5):591-597.
文章导航

/