[1] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present and future[J]. Biogeochemistry, 2004, 70(2):153-226.
[2] Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]//Stocker T F, Qin D, Plattner G K, et al. Climate change 2013:The physical sscience basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, New York:Cambridge University Press, 2013:465-570.
[3] Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263):472-475.
[4] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892.
[5] Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621):20130164.
[6] Houlton B Z, Almaraz M, Aneja V, et al. A world of cobenefits:Solving the global nitrogen challenge[J]. Earth's Future, 2019, 7(8):865-872.
[7] Shi Y, Cui S, Ju X, et al. Impacts of reactive nitrogen on climate change in China[J]. Scientific Reports, 2015, 5(1):8118.
[8] Xu P, Chen A, Houlton B Z, et al. Spatial variation of reactive nitrogen emissions from China's croplands codetermined by regional urbanization and its feedback to global climate change[J]. Geophysical Research Letters, 2020, 47(12):e2019GL086551.
[9] Davidson E A, Kanter D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10):105012.
[10] Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828):248-256.
[11] IPCC. Climate change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2013:1535.
[12] 中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2020:380.
[13] Braker G, Conrad R. Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning?[J]. Advances Applied Microbiology, 2011, 75(1):33-70.
[14] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiological Reviews, 1996, 60(4):609-640.
[15] 朱永官,王晓辉,杨小茹,等.农田土壤N2O产生的关键微生物过程及减排措施[J].环境科学, 2014, 35(2):792-800.
[16] Kozlowski J A, Kits K D, Stein L Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria[J]. Frontiers in Microbiology, 2016, 7:1090.
[17] Liu S, Han P, Hink L, et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation[J]. Environmental Science & Technology, 2017, 51(22):13122-13132.
[18] Stieglmeier M, Mooshammer M, Kitzler B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea[J]. The ISME Journal, 2014, 8(5):1135-1146.
[19] Caranto J D, Vilbert A C, Lancaster K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences, 2016, 113(51):14704-14709.
[20] Caranto J D, Lancaster K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences, 2017, 114(31):8217-8222.
[21] Kessel M V, Speth D R, Albertsen M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559.
[22] Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
[23] Camejo P Y, Domingo J S, Mcmaho K D, et al. Genomeenabled insights into the ecophysiology of the comammox bacterium "candidatus nitrospira nitrosa"[J]. MSystems, 2017, 2(5):e00059-17.
[24] Palomo A, Pedersen G, Fowler S, et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J]. The ISME Journal, 2018, 12(7):1779-1793.
[25] Kits K D, Jung M, Vierheilig J, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata[J]. Nature Communications, 2019, 10(1):1836.
[26] Han P, Wu D, Sun D, et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers[J]. Water Research, 2021, 190(6):116728.
[27] Philippot L. Denitrifying genes in bacterial and Archaeal genomes[J]. Biochimica Et Biophysica Acta-Gene Structure and Expression, 2002, 1577(3):355-376.
[28] Schreiber F, Wunderlin P, Udert K M, et al. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities:Biological pathways, chemical reactions, and novel technologies[J]. Frontiers in Microbiology, 2012, 3:373.
[29] Cutruzzolà F. Bacterial nitric oxide synthesis[J]. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1999, 1411(2):231-249.
[30] Sanford R A, Wagner D D, Wu Q, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils[J]. Proceedings of the National Academy of Sciences, 2012, 109(48):19709-19714.
[31] Domeignoz-Horta L A, Spor A, Bru D, et al. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system[J]. Frontiers in Microbiology, 2015, 6(971):971.
[32] Jones C M, Graf D R, Bru D, et al. The unaccounted yet abundant nitrous oxide-reducing microbial community:A potential nitrous oxide sink[J]. The ISME Journal, 2013, 7(2):417-426.
[33] Jones C M, Spor A, Brennan F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9):801-805.
[34] Graf D R H, Jones C M, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions[J]. PLoS One, 2014, 9(12):e114118.
[35] Kuypers M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276.
[36] Yoon S, Cruz-García C, Sanford R, et al. Denitrification versus respiratory ammonification:Environmental controls of two competing dissimilatory NO3-/NO2-reduction pathways in Shewanella loihica strain PV-4[J]. The ISME Journal, 2014, 9(5):1093-1104.
[37] Friedl J, De Rosa D, Rowlings D W, et al. Dissimilatory nitrate reduction to ammonium (DNRA), not denitrification dominates nitrate reduction in subtropical pasture soils upon rewetting[J]. Soil Biology and Biochemistry, 2018, 125:340-349.
[38] Rütting T, Boeckx P, Müller C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7):1779-1791.
[39] Heil J, Liu S, Vereecken H, et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J]. Soil Biology and Biochemistry, 2015, 84:107-115.
[40] Heil J, Vereecken H, Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J]. European Journal of Soil Science, 2016, 67(1):23-39.
[41] Wei J, Amelung W, Lehndorff E, et al. N2O and NO x emissions by reactions of nitrite with soil organic matter of a Norway spruce forest[J]. Biogeochemistry, 2017, 132(3):325-342.
[42] Nelson D W, Bremner J M. Factors affecting chemical transformations of nitrite in soils[J]. Soil Biology and Biochemistry, 1969, 1(3):229-239.
[43] Spataro F, Ianniello A. Sources of atmospheric nitrous acid:State of the science, current research needs, and future prospects[J]. Journal of the Air & Waste Management Association, 2014, 64(11):1232-1250.
[44] Sleiman M, Gundel L A, Pankow J F, et al. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards[J]. Proceedings of the National Academy of Sciences. 2010, 107(15):6576-6581.
[45] Oswald R, Behrendt T, Ermel M, et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen[J]. Science, 2013, 341(6151):1233-1235.
[46] Tang K, Qin M, Duan J, et al. A dual dynamic chamber system based on IBBCEAS for measuring fluxes of nitrous acid in agricultural fields in the North China Plain[J]. Atmospheric Environment, 2019, 196:10-19.
[47] Liu Y, Lu K, Li X, et al. A comprehensive model test of the HONO sources constrained to field measurements at rural North China plain[J]. Environmental Science&Technology, 2019, 53(7):3517-3525.
[48] 吴电明,夏玉玲,侯立军,等.土壤亚硝酸气体(HONO)排放过程及其驱动机制[J].中国生态农业学报, 2018, 26(2):190-194.
[49] Ermel M, Behrendt T, Oswald R, et al. Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils[J]. Scientific Reports, 2018, 8(1):1877.
[50] Stein L Y, Klotz M G. Nitrifying and denitrifying pathways of methanotrophic bacteria[J]. Biochemical Society Transactions, 2011, 39(6):1826-1831.
[51] 王莹,胡春胜.环境中的反硝化微生物种群结构和功能研究进展[J].中国生态农业学报, 2010, 18(6):1378-1384.
[52] Wu D, Horn M A, Behrendt T, et al. Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite:tackling the HONO puzzle[J]. The ISME Journal, 2019, 13(7):1688-1699.
[53] Maljanen M, Yli-Pirilä P, Hytönen J, et al. Acidic northern soils as sources of atmospheric nitrous acid (HONO)[J]. Soil Biology and Biochemistry, 2013, 67:94-97.
[54] Su H, Cheng Y, Oswald R, et al. Soil nitrite as a source of atmospheric HONO and OH radicals[J]. Science, 2011, 333(6049):1616-1618.
[55] Donaldson M A, Bish D L, Raff J D. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid[J]. Proceedings of the National Academy of Sciences, 2014, 111(52):18472-18477.
[56] Pilegaard K. Processes regulating nitric oxide emissions from soils[J]. Philosophical Transactions of the Royal Society of London, 2013, 368(1621):20130126.
[57] Li Y, Schichtel B A, Walker J T, et al. Increasing importance of deposition of reduced nitrogen in the United States[J]. Proceedings of the National Academy of Sciences, 2016, 113(21):5874-5879.
[58] Zheng X, Huang Y, Wang Y, et al. Seasonal characteristics of nitric oxide emission from a typical Chinese ricewheat rotation during the non-waterlogged period[J]. Global Change Biology, 2003, 9(2):219-227.
[59] Pilegaard K, Skiba U, Ambus P, et al. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O)[J]. Biogeosciences, 2006, 3(4):651-661.
[60] 谢旻,王体健,江飞,等. NOx和VOC自然源排放及其对中国地区对流层光化学特性影响的数值模拟研究[J].环境科学, 2007, 28(1):32-40.
[61] Hickman J E, Wu S, Mickley L J, et al. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution[J]. Proceedings of the National Academy of Sciences, 2010, 107(22):10115-10119.
[62] Slemr F, Seiler W. Field measurements of NO and NO2 emissions from fertilized and unfertilized soils[J]. Journal of Atmospheric Chemistry, 1984, 2(1):1-24.
[63] Delany A C, Fitzjarrald D R, Lenschow D H, et al. Direct measurements of nitrogen oxides and ozone fluxes over grassland[J]. Journal of Atmospheric Chemistry, 1986, 4(4):429-444.
[64] Cui F, Yan G, Zhou Z, et al. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain[J]. Soil Biology and Biochemistry, 2012, 48:10-19.
[65] Russow R, Spott O, Stange C F. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments[J]. Soil Biology and Biochemistry, 2008, 40(2):380-391.
[66] Remde A, Conrad R. Role of nitrification and denitrification for NO metabolism in soil[J]. Biogeochemistry, 1991, 12(3):190-205.
[67] Heil J, Vereecken H, Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J]. European Journal of Soil Science, 2016, 67(1):23-39.
[68] van Cleemput O, Baert L. Nitrite:A key compound in N loss processes under acid conditions?[J]. Plant and Soil, 1984, 76(1/3):233-241.
[69] Nelson D W, Bremner J M. Gaseous products of nitrite decomposition in soils[J]. Soil Biology and Biochemistry, 1970, 2(3):203-208.
[70] Stevenson F J, Nelson D W. Gaseous losses of nitrogen other than through denitrification[M]. Madison:American Society of Agronomy, 1982.
[71] Russow R, Stange C F, Neue H U. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil:Results from 15N tracer experiments[J]. Soil Biology and Biochemistry, 2009, 41(4):785-795.
[72] Behera S N, Sharma M, Aneja V P, et al. Ammonia in the atmosphere:A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research International, 2013, 20(11):8092-8131.
[73] Kang Y, Liu M, Song Y, et al. High-resolution ammonia emissions inventories in China from 1980-2012[J]. Atmospheric Chemistry and Physics Discussions, 2015, 15(19):26959-26995.
[74] Shen J, Liu X, Zhang Y, et al. Atmospheric ammonia and particulate ammonium from agricultural sources in the North China Plain[J]. Atmospheric Environment, 2011, 45(28):5033-5041.
[75] 张文倩,葛茂发,佟胜睿,等.土壤释放大气活性含氮物种的研究进展[J].矿物岩石地球化学通报, 2020, 39(1):44-50.
[76] Fan X H, Li Y C, Alva A K. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers[J]. Communications in Soil Science and Plant Analysis, 2011, 42(10):1111-1122.
[77] Cameron K C, Di H J, Moir J L. Nitrogen losses from the soil/plant system:A review[J]. Annals of Applied Biology, 2013, 162(2):145-173.
[78] Schleper C. Ammonia oxidation:Different niches for bacteria and archaea?[J]. The ISME Journal, 2010, 4(9):1092-1094.
[79] Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266):976-979.
[80] Scharko N K, Schütte U M E, Berke A E, et al. Combined flux chamber and genomics approach links nitrous acid emissions to ammonia oxidizing bacteria and archaea in urban and agricultural soil[J]. Environmental Science & Technology, 2015, 49(23):13825-13834.
[81] Mushinski R M, Phillips R P, Payne Z C, et al. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils[J]. Proceedings of the National Academy of Sciences, 2019, 116(6):2138-2145.
[82] 卢丽丽,吴根义.农田氨排放影响因素研究进展[J].中国农业大学学报, 2019, 24(1):149-162.
[83] Gleeson D B, Müller C, Banerjee S, et al. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space[J]. Soil Biology and Biochemistry, 2010, 42(10):1888-1891.
[84] 高鹏程,张一平.氨挥发与土壤水分散失关系的研究[J].西北农林科技大学学报(自然科学版), 2001(6):22-26.
[85] 王文林,刘波,韩睿明,等.农业源氨排放影响因素研究进展[J].生态与农村环境学报, 2016, 32(6):870-878.
[86] Meusel H, Tamm A, Kuhn U, et al. Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus[J]. Atmospheric Chemistry and Physics, 2018, 18(2):799-813.
[87] Yu R, Kampschreur M J, Loosdrecht M C M V, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient aNOxia[J]. Environmental Science & Technology, 2010, 44(4):1313-1319.
[88] Williams E J, Fehsenfeld F C. Measurement of soil nitrogen oxide emissions at three North American ecosystems[J]. Journal of Geophysical Research Atmospheres, 1991, 96(D1):1033-1042.
[89] Aneja V P, Robarge W P, Holbrook B D. Measurements of nitric oxide flux from an upper coastal plain, North Carolina agricultural soil[J]. Atmospheric Environment, 1995, 29(21):3037-3042.
[90] Agehara S, Warncke D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources[J]. Soil Science Society of America Journal, 2005, 69(6):1844-1855.
[91] He F, Jiang R, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J]. Environmental Pollution, 2009, 157(5):1666-1672.
[92] Gregorich E, Rochette P, Vandenbygaart A, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J]. Soil & Tillage Research, 2005, 83(1):53-72.
[93] Pang X, Mu Y, Lee X, et al. Nitric oxides and nitrous oxide fluxes from typical vegetables cropland in China:Effects of canopy, soil properties and field management[J]. Atmospheric Environment, 2009, 43(16):2571-2578.
[94] Cannavo P, Richaume A, Lafolie F. Fate of nitrogen and carbon in the vadose zone:In situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities[J]. Soil Biology and Biochemistry, 2004, 36(3):463-478.
[95] 易琼,黄旭,张木,等.氮肥施用水平及种类对生菜产量及菜地N2O排放的影响[J].农业环境科学学报, 2016, 35(10):2019-2025.
[96] Meijide A, García-Torres L, Arce A, et al. Nitrogen oxide emissions affected by organic fertilization in a nonirrigated Mediterranean barley field[J]. Agriculture, Ecosystems & Environment, 2009, 132(1-2):106-115.
[97] 李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报, 2005, 11(1):51-56.
[98] Köster J R, Cárdenas L M, Bol R, et al. Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification:An N2O isotopomer case study[J]. Soil Biology and Biochemistry, 2015, 84:65-74.
[99] Zhang Y, Luan S, Chen L, et al. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China[J]. Journal of Environmental Management, 2011, 92(3):480-493.
[100] Liang S, Wu Z, Chen L, et al. Development and application of slow release fertilizer[J]. Agricultural Sciences in China, 2009, 8(6):1.
[101] 赵秉强,张福锁,廖宗文,等.我国新型肥料发展战略研究[J].植物营养与肥料学报, 2004, 10(5):536-545.
[102] Rochette P, Angers D A, Chantigny M H, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils:A laboratory comparison[J]. Soil and Tillage Research, 2009, 103(2):310-315.
[103] Timilsena Y P, Adhikari R, Casey P, et al. Enhanced efficiency fertilisers:A review of formulation and nutrient release patterns[J]. Journal of the Science of Food and Agriculture, 2015, 95(6):1131-1142.
[104] Shan L, He Y, Chen J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Journal of Environmental Sciences, 2015, 38:14-23.
[105] 栾江,仇焕广,井月,等.我国化肥施用量持续增长的原因分解及趋势预测[J].自然资源学报, 2013, 28(11):1869-1878.
[106] Yao Y, Zhang M, Tian Y, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218:254-266.
[107] Yao Y, Zhang M, Tian Y, et al. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field[J]. Field Crops Research, 2018, 218:141-149.
[108] Khalil M I, Schmidhalter U, Gutser R. N2O, NH3 and NO x emissions as a function of urea granule size and soil type under aerobic conditions[J]. Water, Air, and Soil Pollution, 2006, 175(1-4):127-148.
[109] 杨云,黄耀,姜纪峰.土壤理化特性对冬季菜地N2O排放的影响[J].农村生态环境, 2005, 21(2):7-12.
[110] Mkhabela M S, Madani A, Gordon R, et al. Gaseous and leaching nitrogen losses from no-tillage and conventional tillage systems following surface application of cattle manure[J]. Soil and Tillage Research, 2008, 98(2):187-199.
[111] Liu X J, Mosier A R, Halvorson A D, et al. Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields[J]. Plant and Soil, 2005, 276(1/2):235-249.
[112] Liu H, Zhao P, Lu P, et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China[J]. Agriculture, Ecosystems & Environment, 2008, 124(1/2):125-135.
[113] Ernfors M, Arnold K V, Stendahl J. Nitrous oxide emissions from drained organic forest soils:An up-scaling based on C:N ratios[J]. Biogeochemistry, 2007, 84(2):219-231.
[114] van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 2011, 475(7355):214-216.
[115] Zhong L, Bowatte S, Newton P, et al. An increased ratio of fungi to bacteria indicates greater potential for N2O production in a grazed grassland exposed to elevated CO 2[J]. Agriculture, Ecosystems & Environment, 2018, 254(9):111-116.
[116] Tian H, Yang J, Xu R, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models:Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2018, 25(2):640-659.
[117] Wang Q, Zhou F, Shang Z, et al. Data-driven estimates of global nitrous oxide emissions from croplands[J]. National Science Review, 2020, 7(2):441-452.
[118] Dangal S R S, Tian H, Xu R, et al. Global nitrous oxide emissions from pasturelands and rangelands:Magnitude, spatiotemporal patterns, and attribution[J]. Global Biogeochemical Cycles, 2019, 33:200-222.
[119] Saikawa E, Prinn R G, Dlugokencky E, et al. Global and regional emissions estimates for N2O[J]. Atmospheric Chemistry and Physics, 2014, 14(9):4617-4641.
[120] Grosso S, Wirth T, Ogle S M, et al. Estimating agricultural nitrous oxide emissions[J]. Eos, Transactions American Geophysical Union, 2008, 89(51):529.
[121] Thompson R L, Lassaletta L, Patra P K, et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion[J]. Nature Climate Change, 2019, 9(12):993-998.
[122] Wang Q, Zhou F, Shang Z, et al. Data-driven estimates of global nitrous oxide emissions from croplands[J]. National Science Review, 2020, 7(2):441-452.
[123] 周丰,崔晓庆,尚子吟,等.农田N2O排放时空格局的形成机理和全球评估[J].农业环境科学学报, 2020, 39(4):680-690.
[124] Xu R, Tian H, Pan S, et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems:Empirical and process-based estimates and uncertainty[J]. Global Change Biology, 2018, 25(1):314-326.
[125] Riddick S, Ward D, Hess P, et al. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the community earth system model[J]. Biogeosciences, 2016, 13(11):3397-3426.
[126] Ma R, Zou J, Han Z, et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application:A refinement based on regional and crop-specific emission factors[J]. Global Change Biology, 2020, 27(4):855-867.
[127] IPCC. N2O emissions from managed soils, and CO2 emissions from lime and urea application[C]//In Buendia E C, Tanabe K, Kranjc A, et al. Volume 4:Agriculture, forestry and other land use. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories, 2019:11.37-11.39.
[128] Yan X, Ohara T, Akimoto H. Statistical modeling of global soil NOx emissions[J]. Global Biogeochemical Cycles, 2005, 19(3):2004GB002276.
[129] Yienger J J, Levy I H. Empirical model of global soilbiogenic NOx emissions[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D6):11447-11464.
[130] Ganzeveld L N. Global soil-biogenic NOx emissions and the role of canopy processes[J]. Journal of Geophysical Research, 2002, 107(D16):ACH 9-1-ACH 9-17.
[131] Hudman R C, Moore N E, Mebust A K, et al. Steps towards a mechanistic model of global soil nitric oxide emissions:Implementation and space based-constraints[J]. Atmospheric Chemistry and Physics, 2012, 12(16):7779-7795.
[132] Jaeglé L, Steinberger L, Martin R V, et al. Global partitioning of NOx sources using satellite observations:Relative roles of fossil fuel combustion, biomass burning and soil emissions[J]. Faraday Discussions. 2005, 130:407-423.
[133] Weng H, Lin J, Martin R, et al. Global high-resolution emissions of soil NO x, sea salt aerosols, and biogenic volatile organic compounds[J]. Scientific Data, 2020, 7(1):148.
[134] Weber B, Wu D, Tamm A, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands[J]. Proceedings of the National Academy of Sciences, 2015, 112(50):15384-15389.
[135] Xu Z, Jiang Y, Zhou G. Nitrogen cycles in terrestrial ecosystems:Climate change impacts and mitigation[J]. Environmental Reviews, 2016, 24(2):132-143.
[136] Yu G, Jia Y, He N, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6):424-429.