专题:土壤生态学

土壤活性氮气体排放研究进展

  • 宋雅琦 ,
  • 吴电明 ,
  • 俞元春
展开
  • 1. 南京林业大学生物与环境学院, 南方现代林业协同创新中心, 南京 210037;
    2. 华东师范大学地理科学学院, 教育部地理信息科学重点实验室, 上海 200241;
    3. 崇明生态研究院, 上海 202162;
    4. 中国科学院大气物理研究所, 大气边界层物理和大气化学国家重点实验室, 北京 100029
宋雅琦,博士研究生,研究方向为土壤生态学,电子信箱:604885202@qq.com

收稿日期: 2021-02-24

  修回日期: 2021-04-20

  网络出版日期: 2022-03-25

基金资助

国家自然科学基金项目(41807449,42077083);中央高校基本科研业务费专项(13901-120215-10137,40500-20101-222280);LAPC国家重点实验室开放课题(LAPC-KF-2022-09)

Soil reactive nitrogen gases emission: A review

  • SONG Yaqi ,
  • WU Dianming ,
  • YU Yuanchun
Expand
  • 1. College of Biology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
    2. School of Geographical Sciences, East China Normal University, Key Laboratory of Geographic Information Sciences, Ministry of Education, Shanghai 200241, China;
    3. Institute of Eco-Chongming (IEC), Shanghai 202162, China;
    4. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2021-02-24

  Revised date: 2021-04-20

  Online published: 2022-03-25

摘要

氮肥的不合理施用导致土壤活性氮气体(Nr,包括N2O、HONO、NOx、NH3等)过度排放,严重威胁着生态环境和人类健康。综述了土壤Nr排放的主要途径,探讨了土壤微生物过程、施肥、土壤温度、土壤水分含量、耕作方式及其他调控因素对土壤Nr排放的影响,总结了土壤Nr排放通量估算的研究现状。提出未来的研究还需结合多种手段,例如宏观与微观结合、多学科交叉、GIS技术与机理模型相结合、宏基因组测序技术、遥感观测等技术,深入探究土壤Nr排放的关键机制、驱动因素和空间格局,以及在全球变化和碳中和背景下土壤Nr排放的响应,完善土壤Nr排放估算模型,为有效控制和减少大气Nr污染、提高空气质量、优化氮肥利用提供科学依据和指导。

本文引用格式

宋雅琦 , 吴电明 , 俞元春 . 土壤活性氮气体排放研究进展[J]. 科技导报, 2022 , 40(3) : 130 -144 . DOI: 10.3981/j.issn.1000-7857.2022.03.012

Abstract

Improper application of nitrogen fertilizers may lead to excessive emissions of soil nitrogen gases (Nr,including N2O,HONO,NOx,NH3,etc.),which may seriously threaten the ecological environment and human health.Emission of Nr from soil involves a variety of biotic and abiotic processes,which have complex mutual interactions.Soil physical and chemical properties,fertilization factors,climate,etc.will all affect the production and emission of soil Nr to a certain extent.This paper summarizes the current research status of soil Nr emission processes,regulatory factors,and soil Nr emission flux estimation.We further argue that future research should adopt a variety of methods,such as the combination of macro and micro studies,multi-disciplinary cross studies,combination of GIS technology and mechanic modelling,metagenomics sequencing,remote sensing observation and other techniques,and so on.More work should focus on in-depth exploration of key mechanisms,driving factors and spatial patterns of soil Nr emissions,as well as the response of soil Nr emissions to global change and carbon neutrality,and improving estimation models of soil Nr emission.This review provides a scientific basis and guidance for effectively controlling and reducing atmospheric Nr pollution,improving air quality and optimizing nitrogen fertilizer utilization.

参考文献

[1] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:Past, present and future[J]. Biogeochemistry, 2004, 70(2):153-226.
[2] Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]//Stocker T F, Qin D, Plattner G K, et al. Climate change 2013:The physical sscience basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, New York:Cambridge University Press, 2013:465-570.
[3] Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263):472-475.
[4] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892.
[5] Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621):20130164.
[6] Houlton B Z, Almaraz M, Aneja V, et al. A world of cobenefits:Solving the global nitrogen challenge[J]. Earth's Future, 2019, 7(8):865-872.
[7] Shi Y, Cui S, Ju X, et al. Impacts of reactive nitrogen on climate change in China[J]. Scientific Reports, 2015, 5(1):8118.
[8] Xu P, Chen A, Houlton B Z, et al. Spatial variation of reactive nitrogen emissions from China's croplands codetermined by regional urbanization and its feedback to global climate change[J]. Geophysical Research Letters, 2020, 47(12):e2019GL086551.
[9] Davidson E A, Kanter D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10):105012.
[10] Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828):248-256.
[11] IPCC. Climate change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2013:1535.
[12] 中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2020:380.
[13] Braker G, Conrad R. Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning?[J]. Advances Applied Microbiology, 2011, 75(1):33-70.
[14] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiological Reviews, 1996, 60(4):609-640.
[15] 朱永官,王晓辉,杨小茹,等.农田土壤N2O产生的关键微生物过程及减排措施[J].环境科学, 2014, 35(2):792-800.
[16] Kozlowski J A, Kits K D, Stein L Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria[J]. Frontiers in Microbiology, 2016, 7:1090.
[17] Liu S, Han P, Hink L, et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation[J]. Environmental Science & Technology, 2017, 51(22):13122-13132.
[18] Stieglmeier M, Mooshammer M, Kitzler B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea[J]. The ISME Journal, 2014, 8(5):1135-1146.
[19] Caranto J D, Vilbert A C, Lancaster K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences, 2016, 113(51):14704-14709.
[20] Caranto J D, Lancaster K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences, 2017, 114(31):8217-8222.
[21] Kessel M V, Speth D R, Albertsen M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559.
[22] Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
[23] Camejo P Y, Domingo J S, Mcmaho K D, et al. Genomeenabled insights into the ecophysiology of the comammox bacterium "candidatus nitrospira nitrosa"[J]. MSystems, 2017, 2(5):e00059-17.
[24] Palomo A, Pedersen G, Fowler S, et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J]. The ISME Journal, 2018, 12(7):1779-1793.
[25] Kits K D, Jung M, Vierheilig J, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata[J]. Nature Communications, 2019, 10(1):1836.
[26] Han P, Wu D, Sun D, et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers[J]. Water Research, 2021, 190(6):116728.
[27] Philippot L. Denitrifying genes in bacterial and Archaeal genomes[J]. Biochimica Et Biophysica Acta-Gene Structure and Expression, 2002, 1577(3):355-376.
[28] Schreiber F, Wunderlin P, Udert K M, et al. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities:Biological pathways, chemical reactions, and novel technologies[J]. Frontiers in Microbiology, 2012, 3:373.
[29] Cutruzzolà F. Bacterial nitric oxide synthesis[J]. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1999, 1411(2):231-249.
[30] Sanford R A, Wagner D D, Wu Q, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils[J]. Proceedings of the National Academy of Sciences, 2012, 109(48):19709-19714.
[31] Domeignoz-Horta L A, Spor A, Bru D, et al. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system[J]. Frontiers in Microbiology, 2015, 6(971):971.
[32] Jones C M, Graf D R, Bru D, et al. The unaccounted yet abundant nitrous oxide-reducing microbial community:A potential nitrous oxide sink[J]. The ISME Journal, 2013, 7(2):417-426.
[33] Jones C M, Spor A, Brennan F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9):801-805.
[34] Graf D R H, Jones C M, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions[J]. PLoS One, 2014, 9(12):e114118.
[35] Kuypers M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276.
[36] Yoon S, Cruz-García C, Sanford R, et al. Denitrification versus respiratory ammonification:Environmental controls of two competing dissimilatory NO3-/NO2-reduction pathways in Shewanella loihica strain PV-4[J]. The ISME Journal, 2014, 9(5):1093-1104.
[37] Friedl J, De Rosa D, Rowlings D W, et al. Dissimilatory nitrate reduction to ammonium (DNRA), not denitrification dominates nitrate reduction in subtropical pasture soils upon rewetting[J]. Soil Biology and Biochemistry, 2018, 125:340-349.
[38] Rütting T, Boeckx P, Müller C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7):1779-1791.
[39] Heil J, Liu S, Vereecken H, et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J]. Soil Biology and Biochemistry, 2015, 84:107-115.
[40] Heil J, Vereecken H, Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J]. European Journal of Soil Science, 2016, 67(1):23-39.
[41] Wei J, Amelung W, Lehndorff E, et al. N2O and NO x emissions by reactions of nitrite with soil organic matter of a Norway spruce forest[J]. Biogeochemistry, 2017, 132(3):325-342.
[42] Nelson D W, Bremner J M. Factors affecting chemical transformations of nitrite in soils[J]. Soil Biology and Biochemistry, 1969, 1(3):229-239.
[43] Spataro F, Ianniello A. Sources of atmospheric nitrous acid:State of the science, current research needs, and future prospects[J]. Journal of the Air & Waste Management Association, 2014, 64(11):1232-1250.
[44] Sleiman M, Gundel L A, Pankow J F, et al. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards[J]. Proceedings of the National Academy of Sciences. 2010, 107(15):6576-6581.
[45] Oswald R, Behrendt T, Ermel M, et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen[J]. Science, 2013, 341(6151):1233-1235.
[46] Tang K, Qin M, Duan J, et al. A dual dynamic chamber system based on IBBCEAS for measuring fluxes of nitrous acid in agricultural fields in the North China Plain[J]. Atmospheric Environment, 2019, 196:10-19.
[47] Liu Y, Lu K, Li X, et al. A comprehensive model test of the HONO sources constrained to field measurements at rural North China plain[J]. Environmental Science&Technology, 2019, 53(7):3517-3525.
[48] 吴电明,夏玉玲,侯立军,等.土壤亚硝酸气体(HONO)排放过程及其驱动机制[J].中国生态农业学报, 2018, 26(2):190-194.
[49] Ermel M, Behrendt T, Oswald R, et al. Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils[J]. Scientific Reports, 2018, 8(1):1877.
[50] Stein L Y, Klotz M G. Nitrifying and denitrifying pathways of methanotrophic bacteria[J]. Biochemical Society Transactions, 2011, 39(6):1826-1831.
[51] 王莹,胡春胜.环境中的反硝化微生物种群结构和功能研究进展[J].中国生态农业学报, 2010, 18(6):1378-1384.
[52] Wu D, Horn M A, Behrendt T, et al. Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite:tackling the HONO puzzle[J]. The ISME Journal, 2019, 13(7):1688-1699.
[53] Maljanen M, Yli-Pirilä P, Hytönen J, et al. Acidic northern soils as sources of atmospheric nitrous acid (HONO)[J]. Soil Biology and Biochemistry, 2013, 67:94-97.
[54] Su H, Cheng Y, Oswald R, et al. Soil nitrite as a source of atmospheric HONO and OH radicals[J]. Science, 2011, 333(6049):1616-1618.
[55] Donaldson M A, Bish D L, Raff J D. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid[J]. Proceedings of the National Academy of Sciences, 2014, 111(52):18472-18477.
[56] Pilegaard K. Processes regulating nitric oxide emissions from soils[J]. Philosophical Transactions of the Royal Society of London, 2013, 368(1621):20130126.
[57] Li Y, Schichtel B A, Walker J T, et al. Increasing importance of deposition of reduced nitrogen in the United States[J]. Proceedings of the National Academy of Sciences, 2016, 113(21):5874-5879.
[58] Zheng X, Huang Y, Wang Y, et al. Seasonal characteristics of nitric oxide emission from a typical Chinese ricewheat rotation during the non-waterlogged period[J]. Global Change Biology, 2003, 9(2):219-227.
[59] Pilegaard K, Skiba U, Ambus P, et al. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O)[J]. Biogeosciences, 2006, 3(4):651-661.
[60] 谢旻,王体健,江飞,等. NOx和VOC自然源排放及其对中国地区对流层光化学特性影响的数值模拟研究[J].环境科学, 2007, 28(1):32-40.
[61] Hickman J E, Wu S, Mickley L J, et al. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution[J]. Proceedings of the National Academy of Sciences, 2010, 107(22):10115-10119.
[62] Slemr F, Seiler W. Field measurements of NO and NO2 emissions from fertilized and unfertilized soils[J]. Journal of Atmospheric Chemistry, 1984, 2(1):1-24.
[63] Delany A C, Fitzjarrald D R, Lenschow D H, et al. Direct measurements of nitrogen oxides and ozone fluxes over grassland[J]. Journal of Atmospheric Chemistry, 1986, 4(4):429-444.
[64] Cui F, Yan G, Zhou Z, et al. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain[J]. Soil Biology and Biochemistry, 2012, 48:10-19.
[65] Russow R, Spott O, Stange C F. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments[J]. Soil Biology and Biochemistry, 2008, 40(2):380-391.
[66] Remde A, Conrad R. Role of nitrification and denitrification for NO metabolism in soil[J]. Biogeochemistry, 1991, 12(3):190-205.
[67] Heil J, Vereecken H, Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J]. European Journal of Soil Science, 2016, 67(1):23-39.
[68] van Cleemput O, Baert L. Nitrite:A key compound in N loss processes under acid conditions?[J]. Plant and Soil, 1984, 76(1/3):233-241.
[69] Nelson D W, Bremner J M. Gaseous products of nitrite decomposition in soils[J]. Soil Biology and Biochemistry, 1970, 2(3):203-208.
[70] Stevenson F J, Nelson D W. Gaseous losses of nitrogen other than through denitrification[M]. Madison:American Society of Agronomy, 1982.
[71] Russow R, Stange C F, Neue H U. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil:Results from 15N tracer experiments[J]. Soil Biology and Biochemistry, 2009, 41(4):785-795.
[72] Behera S N, Sharma M, Aneja V P, et al. Ammonia in the atmosphere:A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research International, 2013, 20(11):8092-8131.
[73] Kang Y, Liu M, Song Y, et al. High-resolution ammonia emissions inventories in China from 1980-2012[J]. Atmospheric Chemistry and Physics Discussions, 2015, 15(19):26959-26995.
[74] Shen J, Liu X, Zhang Y, et al. Atmospheric ammonia and particulate ammonium from agricultural sources in the North China Plain[J]. Atmospheric Environment, 2011, 45(28):5033-5041.
[75] 张文倩,葛茂发,佟胜睿,等.土壤释放大气活性含氮物种的研究进展[J].矿物岩石地球化学通报, 2020, 39(1):44-50.
[76] Fan X H, Li Y C, Alva A K. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers[J]. Communications in Soil Science and Plant Analysis, 2011, 42(10):1111-1122.
[77] Cameron K C, Di H J, Moir J L. Nitrogen losses from the soil/plant system:A review[J]. Annals of Applied Biology, 2013, 162(2):145-173.
[78] Schleper C. Ammonia oxidation:Different niches for bacteria and archaea?[J]. The ISME Journal, 2010, 4(9):1092-1094.
[79] Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266):976-979.
[80] Scharko N K, Schütte U M E, Berke A E, et al. Combined flux chamber and genomics approach links nitrous acid emissions to ammonia oxidizing bacteria and archaea in urban and agricultural soil[J]. Environmental Science & Technology, 2015, 49(23):13825-13834.
[81] Mushinski R M, Phillips R P, Payne Z C, et al. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils[J]. Proceedings of the National Academy of Sciences, 2019, 116(6):2138-2145.
[82] 卢丽丽,吴根义.农田氨排放影响因素研究进展[J].中国农业大学学报, 2019, 24(1):149-162.
[83] Gleeson D B, Müller C, Banerjee S, et al. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space[J]. Soil Biology and Biochemistry, 2010, 42(10):1888-1891.
[84] 高鹏程,张一平.氨挥发与土壤水分散失关系的研究[J].西北农林科技大学学报(自然科学版), 2001(6):22-26.
[85] 王文林,刘波,韩睿明,等.农业源氨排放影响因素研究进展[J].生态与农村环境学报, 2016, 32(6):870-878.
[86] Meusel H, Tamm A, Kuhn U, et al. Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus[J]. Atmospheric Chemistry and Physics, 2018, 18(2):799-813.
[87] Yu R, Kampschreur M J, Loosdrecht M C M V, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient aNOxia[J]. Environmental Science & Technology, 2010, 44(4):1313-1319.
[88] Williams E J, Fehsenfeld F C. Measurement of soil nitrogen oxide emissions at three North American ecosystems[J]. Journal of Geophysical Research Atmospheres, 1991, 96(D1):1033-1042.
[89] Aneja V P, Robarge W P, Holbrook B D. Measurements of nitric oxide flux from an upper coastal plain, North Carolina agricultural soil[J]. Atmospheric Environment, 1995, 29(21):3037-3042.
[90] Agehara S, Warncke D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources[J]. Soil Science Society of America Journal, 2005, 69(6):1844-1855.
[91] He F, Jiang R, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J]. Environmental Pollution, 2009, 157(5):1666-1672.
[92] Gregorich E, Rochette P, Vandenbygaart A, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J]. Soil & Tillage Research, 2005, 83(1):53-72.
[93] Pang X, Mu Y, Lee X, et al. Nitric oxides and nitrous oxide fluxes from typical vegetables cropland in China:Effects of canopy, soil properties and field management[J]. Atmospheric Environment, 2009, 43(16):2571-2578.
[94] Cannavo P, Richaume A, Lafolie F. Fate of nitrogen and carbon in the vadose zone:In situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities[J]. Soil Biology and Biochemistry, 2004, 36(3):463-478.
[95] 易琼,黄旭,张木,等.氮肥施用水平及种类对生菜产量及菜地N2O排放的影响[J].农业环境科学学报, 2016, 35(10):2019-2025.
[96] Meijide A, García-Torres L, Arce A, et al. Nitrogen oxide emissions affected by organic fertilization in a nonirrigated Mediterranean barley field[J]. Agriculture, Ecosystems & Environment, 2009, 132(1-2):106-115.
[97] 李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报, 2005, 11(1):51-56.
[98] Köster J R, Cárdenas L M, Bol R, et al. Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification:An N2O isotopomer case study[J]. Soil Biology and Biochemistry, 2015, 84:65-74.
[99] Zhang Y, Luan S, Chen L, et al. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China[J]. Journal of Environmental Management, 2011, 92(3):480-493.
[100] Liang S, Wu Z, Chen L, et al. Development and application of slow release fertilizer[J]. Agricultural Sciences in China, 2009, 8(6):1.
[101] 赵秉强,张福锁,廖宗文,等.我国新型肥料发展战略研究[J].植物营养与肥料学报, 2004, 10(5):536-545.
[102] Rochette P, Angers D A, Chantigny M H, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils:A laboratory comparison[J]. Soil and Tillage Research, 2009, 103(2):310-315.
[103] Timilsena Y P, Adhikari R, Casey P, et al. Enhanced efficiency fertilisers:A review of formulation and nutrient release patterns[J]. Journal of the Science of Food and Agriculture, 2015, 95(6):1131-1142.
[104] Shan L, He Y, Chen J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Journal of Environmental Sciences, 2015, 38:14-23.
[105] 栾江,仇焕广,井月,等.我国化肥施用量持续增长的原因分解及趋势预测[J].自然资源学报, 2013, 28(11):1869-1878.
[106] Yao Y, Zhang M, Tian Y, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218:254-266.
[107] Yao Y, Zhang M, Tian Y, et al. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field[J]. Field Crops Research, 2018, 218:141-149.
[108] Khalil M I, Schmidhalter U, Gutser R. N2O, NH3 and NO x emissions as a function of urea granule size and soil type under aerobic conditions[J]. Water, Air, and Soil Pollution, 2006, 175(1-4):127-148.
[109] 杨云,黄耀,姜纪峰.土壤理化特性对冬季菜地N2O排放的影响[J].农村生态环境, 2005, 21(2):7-12.
[110] Mkhabela M S, Madani A, Gordon R, et al. Gaseous and leaching nitrogen losses from no-tillage and conventional tillage systems following surface application of cattle manure[J]. Soil and Tillage Research, 2008, 98(2):187-199.
[111] Liu X J, Mosier A R, Halvorson A D, et al. Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields[J]. Plant and Soil, 2005, 276(1/2):235-249.
[112] Liu H, Zhao P, Lu P, et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China[J]. Agriculture, Ecosystems & Environment, 2008, 124(1/2):125-135.
[113] Ernfors M, Arnold K V, Stendahl J. Nitrous oxide emissions from drained organic forest soils:An up-scaling based on C:N ratios[J]. Biogeochemistry, 2007, 84(2):219-231.
[114] van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 2011, 475(7355):214-216.
[115] Zhong L, Bowatte S, Newton P, et al. An increased ratio of fungi to bacteria indicates greater potential for N2O production in a grazed grassland exposed to elevated CO 2[J]. Agriculture, Ecosystems & Environment, 2018, 254(9):111-116.
[116] Tian H, Yang J, Xu R, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models:Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2018, 25(2):640-659.
[117] Wang Q, Zhou F, Shang Z, et al. Data-driven estimates of global nitrous oxide emissions from croplands[J]. National Science Review, 2020, 7(2):441-452.
[118] Dangal S R S, Tian H, Xu R, et al. Global nitrous oxide emissions from pasturelands and rangelands:Magnitude, spatiotemporal patterns, and attribution[J]. Global Biogeochemical Cycles, 2019, 33:200-222.
[119] Saikawa E, Prinn R G, Dlugokencky E, et al. Global and regional emissions estimates for N2O[J]. Atmospheric Chemistry and Physics, 2014, 14(9):4617-4641.
[120] Grosso S, Wirth T, Ogle S M, et al. Estimating agricultural nitrous oxide emissions[J]. Eos, Transactions American Geophysical Union, 2008, 89(51):529.
[121] Thompson R L, Lassaletta L, Patra P K, et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion[J]. Nature Climate Change, 2019, 9(12):993-998.
[122] Wang Q, Zhou F, Shang Z, et al. Data-driven estimates of global nitrous oxide emissions from croplands[J]. National Science Review, 2020, 7(2):441-452.
[123] 周丰,崔晓庆,尚子吟,等.农田N2O排放时空格局的形成机理和全球评估[J].农业环境科学学报, 2020, 39(4):680-690.
[124] Xu R, Tian H, Pan S, et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems:Empirical and process-based estimates and uncertainty[J]. Global Change Biology, 2018, 25(1):314-326.
[125] Riddick S, Ward D, Hess P, et al. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the community earth system model[J]. Biogeosciences, 2016, 13(11):3397-3426.
[126] Ma R, Zou J, Han Z, et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application:A refinement based on regional and crop-specific emission factors[J]. Global Change Biology, 2020, 27(4):855-867.
[127] IPCC. N2O emissions from managed soils, and CO2 emissions from lime and urea application[C]//In Buendia E C, Tanabe K, Kranjc A, et al. Volume 4:Agriculture, forestry and other land use. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories, 2019:11.37-11.39.
[128] Yan X, Ohara T, Akimoto H. Statistical modeling of global soil NOx emissions[J]. Global Biogeochemical Cycles, 2005, 19(3):2004GB002276.
[129] Yienger J J, Levy I H. Empirical model of global soilbiogenic NOx emissions[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D6):11447-11464.
[130] Ganzeveld L N. Global soil-biogenic NOx emissions and the role of canopy processes[J]. Journal of Geophysical Research, 2002, 107(D16):ACH 9-1-ACH 9-17.
[131] Hudman R C, Moore N E, Mebust A K, et al. Steps towards a mechanistic model of global soil nitric oxide emissions:Implementation and space based-constraints[J]. Atmospheric Chemistry and Physics, 2012, 12(16):7779-7795.
[132] Jaeglé L, Steinberger L, Martin R V, et al. Global partitioning of NOx sources using satellite observations:Relative roles of fossil fuel combustion, biomass burning and soil emissions[J]. Faraday Discussions. 2005, 130:407-423.
[133] Weng H, Lin J, Martin R, et al. Global high-resolution emissions of soil NO x, sea salt aerosols, and biogenic volatile organic compounds[J]. Scientific Data, 2020, 7(1):148.
[134] Weber B, Wu D, Tamm A, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands[J]. Proceedings of the National Academy of Sciences, 2015, 112(50):15384-15389.
[135] Xu Z, Jiang Y, Zhou G. Nitrogen cycles in terrestrial ecosystems:Climate change impacts and mitigation[J]. Environmental Reviews, 2016, 24(2):132-143.
[136] Yu G, Jia Y, He N, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6):424-429.
文章导航

/