[1] 孙亚梅, 郑伟, 宁淼, 等. 论长江经济带大气污染防治的若干问题与防治对策[J]. 中国环境管理, 2018, 10(1):75-80.
[2] Fan S, Liu C, Xie Z, et al. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar[J]. Science of The Total Environment, 2018, 628-629:631-641.
[3] Yang W, Yuan G, Han J. Is China's air pollution control policy effective? Evidence from Yangtze River Delta cities[J]. Journal of Cleaner Production, 2019, 220:110-133.
[4] Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on naturalcause mortality:An analysis of 22 European cohorts within the multicentre ESCAPE project[J]. The Lancet, 2014, 383(9919):785-795.
[5] Chen Z, Wang J N, Ma G X, et al. China tackles the health effects of air pollution[J]. The Lancet, 2013, 382(9909):1959-1960.
[6] Guan W J, Zheng X Y, Chung K F, et al. Impact of air pollution on the burden of chronic respiratory diseases in China:time for urgent action[J]. The Lancet, 2016, 388(10054):1939-1951.
[7] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operations Research, 1978, 2(6):429-434.
[8] Zhou Z, Xu G, Wang C, et al. Modeling undesirable output with a DEA approach based on an exponential transformation:An application to measure the energy efficiency of Chinese industry[J]. Journal of Cleaner Production, 2019, 236:117717.
[9] Xie B C, Duan N, Wang Y S. Environmental efficiency and abatement cost of China's industrial sectors based on a three-stage data envelopment analysis[J]. Journal of Cleaner Production, 2017, 153:626-636.
[10] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3):498-509.
[11] Cecchini L, Venanzi S, Pierri A, et al. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy):A SBM-DEA model with undesirable output[J]. Journal of Cleaner Production, 2018, 197:895-907.
[12] 蒋姝睿, 谭雪, 石磊, 等. 京津冀大气污染传输通道城市的工业大气污染排放效率分析-基于三阶段DEA方法[J]. 干旱区资源与环境, 2019, 33(6):141-149.
[13] Zhao C, Zhang H, Zeng Y, et al. Total-factor energy efficiency in BRI countries:An estimation based on threestage DEA model[J]. Sustainability, 2018, 10(1):278.
[14] Tone K. A slacks-based measure of super-efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2002, 143(1):32-41.
[15] Fang H H, Lee H S, Hwang S N, et al. A slacks-based measure of super-efficiency in data envelopment analysis:An alternative approach[J]. Omega, 2013, 41(4):731-734.
[16] 卢新海, 杨喜, 陈泽秀. 中国城市土地绿色利用效率测度及其时空演变特征[J]. 中国人口·资源与环境, 2020, 30(8):83-91.
[17] Tao X, Wang P, Zhu B. Provincial green economic efficiency of China:A non-separable input-output SBM approach[J]. Applied Energy, 2016, 171:58-66.
[18] 王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020, 75(6):1316-1330.
[19] Fan J L, Zhang X, Zhang J, et al. Efficiency evaluation of CO2 utilization technologies in China:A super-efficiency DEA analysis based on expert survey[J]. Journal of CO2 Utilization, 2015, 11:54-62.
[20] 石晓然, 张彩霞, 殷克东. 中国沿海省市海洋生态补偿效率评价[J]. 中国环境科学, 2020, 40(7):3204-3215.
[21] 尚杰, 魏东方, 吉雪强. 技术进步、农业用水效率与回弹效应——基于我国粮食主产区面板数据的实证研究[J]. 生态经济, 2020, 36(11):94-100.
[22] 汪克亮, 杨力, 孟祥瑞. 中国大气环境绩效的空间差异、动态演进及其驱动机制——基于2006-2014年省际面板数据的实证分析[J]. 山西财经大学学报, 2016, 38(9):13-24.
[23] Wang X, Ding H, Liu L. Eco-efficiency measurement of industrial sectors in China:A hybrid super-efficiency DEA analysis[J]. Journal of Cleaner Production, 2019, 229:53-64.
[24] Zhou Z, Guo X, Wu H, et al. Evaluating air quality in China based on daily data:Application of integer data envelopment analysis[J]. Journal of Cleaner Production, 2018, 198:304-311.
[25] 汪艳涛, 张娅娅. 生态效率区域差异及其与产业结构升级交互空间溢出效应[J]. 地理科学, 2020, 40(8):1276-1284.
[26] Yang W, Li L. Efficiency evaluation of industrial waste gas control in China:A study based on data envelopment analysis (DEA) model[J]. Journal of Cleaner Production, 2018, 179:1-11.
[27] 丁镭, 卢滢宇, 叶霜霜. 浙江省大气环境效率评价及区域差异[J]. 安全与环境学报, 2019, 19(3):1075-1085.
[28] 张翱祥, 邓荣荣. 中部六省碳排放效率与产业结构优化的耦合协调度及影响因素分析[J]. 生态经济, 2021, 37(3):31-37.
[29] 马丽, 康蕾, 金凤君. 京津冀工业发展与大气污染物排放时空耦合关系分析[J]. 环境影响评价, 2018, 40(5):51-56.
[30] 周迪, 王雪芹. 中国碳排放效率与产业结构升级的耦合度及耦合路径[J]. 自然资源学报, 2019, 34(11):2305-2316.
[31] 汪克亮, 刘悦, 杨宝臣. 京津冀城市群大气环境效率的地区差异、动态演进与影响机制[J]. 地域研究与开发, 2019, 38(3):135-140.
[32] 汪克亮, 孟祥瑞, 杨宝臣, 等. 技术异质下中国大气污染排放效率的区域差异与影响因素[J]. 中国人口·资源与环境, 2017, 27(1):101-110.
[33] 陈浩, 陈平, 罗艳. 京津冀地区环境效率及其影响因素分析[J]. 生态经济, 2015, 31(8):142-146, 150.
[34] 干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011(5):4-16.
[35] 齐园, 张永安. 产业结构演变与工业二氧化硫排放的关系——以京津冀为例[J]. 城市问题, 2015(6):54-62.
[36] Jiao J, Han X, Li F, et al. Contribution of demand shifts to industrial SO2 emissions in a transition economy:Evidence from China[J]. Journal of Cleaner Production, 2017, 164:1455-1466.
[37] Ye H, Wang Q, Wang Y, et al. Industrial SO2 emissions treatment in China:A temporal-spatial whole process decomposition analysis[J]. Journal of Environmental Management, 2019, 243:419-434.
[38] 魏振香, 史相国. 生态可持续与经济高质量发展耦合关系分析——基于省际面板数据实证[J]. 华东经济管理, 2021, 35(4):11-19.
[39] 王少剑, 崔子恬, 林靖杰, 等. 珠三角地区城镇化与生态韧性的耦合协调研究[J]. 地理学报, 2021, 76(4):973-991.
[40] 孙攀, 吴玉鸣, 鲍曙明, 等. 经济增长与雾霾污染治理:空间环境库兹涅茨曲线检验[J]. 南方经济, 2019(12):100-117.
[41] 孙攀, 吴玉鸣, 鲍曙明. 产业结构变迁对碳减排的影响研究——空间计量经济模型实证[J]. 经济经纬, 2018, 35(2):93-98.
[42] 裴耀琳, 郭淑芬. 资源禀赋约束下生产性服务业集聚的产业结构调整效应研究——基于资源型城市和非资源型城市的对比分析[J]. 软科学, 2021, 35(1):62-67.