以氟醚 FM-1D橡胶为研究对象,在高温的 15号航空液压油中进行了老化,对老化后的拉伸强度、拉断伸长率、压缩永久变形、质量变化、体积变化、表面及断口形貌等进行了研究,并与丁腈橡胶进行了对比。结果表明,氟醚橡胶具有优异的耐热空气及耐介质老化性能,其拉伸强度、拉断伸长率、压缩永久变形在170℃以下的液压油介质中长期老化后保持稳定,耐热性能基本保持不变,氟醚橡胶在液压油中的质量和体积变化随温度升高而增加,随时间的延长保持稳定,在质量、体积变化及稳定性方面优于丁腈橡胶胶料。另外,长时间老化过程中其压缩永久变形退化规律基本符合指数的衰减规律,但拉伸性能的退化规律则明显不符合指数的衰减规律,拉伸性能老化速度常数随温度的变化不适合采用常用的Arrhenius方程(P=Ae-Kt)来进行寿命预测。
Fluoroether rubber is usually used as a sealing material in high temperature oil environment. In this study, FM-1D fluoroether rubber is the research object and is aged at high temperature in No. 15 aviation hydraulic oil. Its tensile strength, elongation at break, compression permanent deformation, mass change, volume change, surface and fracture morphology after aging are studied and compared with those of nitrile butadiene rubber. The results are as follows. Fluoroether rubber has excellent aging resistance to aviation hydraulic oil medium. Its tensile strength, elongation at break and compression permanent deformation may keep stable after aging in the hydraulic oil medium below 170℃. Its heat resistance basically remains unchanged. Changes of mass and volume of fluoroether rubber in hydraulic oil increase with increase of temperature and keep stable over time. It is better than the nitrile butadiene rubber compound in terms of mass, volume changes and stability. In the aging process of fluoroether rubber, degradation of compression permanent deformation basically conforms to the exponential decay law, but degradation of tensile property obviously does not conform to that law, and model Arrhenius (P=Ae-Kt) equation does not apply to life prediction either.
[1] 《中国航空材料手册》编委会.中国航空材料手册第 8卷 橡胶密封剂[M].北京:中国标准出版社, 2002:26-40.
[2] 王莉.一种新材料密封圈在航空领域的应用[J].液压与气动, 2006, 12:55-58.
[3] 柳洪超, 吴立军, 尤瑜, 等.氟醚橡胶的性能及其应用[J].化工新型材料, 2007, 35(4):11-24.
[4] Stevens R D.Long tern fuel and heat aging of low tem-perature types of fluoroelastomers[J].Rubber World, 2006, 233(5):23-27.
[5] 裴涛, 程俊梅, 张昱昊, 等.氟醚橡胶的耐热性能研究[J].橡胶工业, 2014, 61(9):528-531.
[6] 朱永康.低温型氟橡胶的长期燃油老化与热老化[J].世界橡胶工业, 2010, 37(7):11-15.
[7] 王云英, 孙旭, 范金娟, 等.密封级氟橡胶在两种航空油液中耐150℃高温试验研究[J].失效分析与预防, 2015, 10(4):212-216.
[8] 张录平, 李晖, 庞明磊, 等.特种氟橡胶耐油介质老化性能研究[J].世界橡胶工业, 2011, 38(1):27-30.
[9] Stefano A, Fabiano M.New perfluoro-elastomer or seek-ing at low temperature[J].Sealing Technology, 2010(9):9-13.
[10] 李少龙, 李珍莲, 董红莉.航空发动机耐高温橡胶密封圈性能试验研究[J].航空标准化与质量, 2019(2):19-23.
[11] 孙书, 李秀杰, 李伟煜, 等.航天器用GD414硅橡胶材料的湿热老化试验与贮存寿命预测[J].失效分析与预防, 2020, 15(2):79-83.
[12] 王珍, 陆明, 孙霞容, 等.氟醚橡胶长期老化性能研究[J].合成材料老化与应用, 2018, 47(5):4-10.
[13] 田辉, 张凤玲, 王越.丁腈橡胶老化拉伸断裂分析[J].测控技术, 2010, 29:348-350.
[14] 阙刚, 彭旭东, 沈明学, 等.丁腈橡胶热空气老化力学性能分析及贮存寿命预测[J].润滑与密封, 2018, 43(2):18-25.
[15] Bulmanis V N,Gunyaev G M,Krivonos V V.Risaspav-lam[M].Moscow:USSR, 1991.