专稿

缪子反常磁矩的精确测量预示存在新物理

  • 李亮
展开
  • 上海交通大学物理与天文学院, 上海 200240
李亮,教授,研究方向为粒子物理实验和高精度测量,电子信箱:liangliphy@sjtu.edu.cn

收稿日期: 2021-06-02

  修回日期: 2021-08-06

  网络出版日期: 2022-04-27

基金资助

国家自然科学基金项目(11975153)

Precise measurement of muon anomalous magnetic moment

  • LI Liang
Expand
  • School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-06-02

  Revised date: 2021-08-06

  Online published: 2022-04-27

摘要

缪子反常磁矩aμ=(gμ-2)/2是缪子的基本物理参数之一,它的精确测量和理论计算为标准模型的诞生奠定了基础。费米缪子反常磁矩实验的首个实验结果表明缪子反常磁矩的测量值和标准模型理论预言不相符。该结果与早期布鲁克海文实验的结果相一致。这2个实验的综合测量结果与标准模型预言值的差距为4.2σ,这为新物理的存在提供了强有力的证据,预示着世界上可能存在新的未知粒子或者作用力。

本文引用格式

李亮 . 缪子反常磁矩的精确测量预示存在新物理[J]. 科技导报, 2022 , 40(6) : 6 -11 . DOI: 10.3981/j.issn.1000-7857.2022.06.001

Abstract

The muon anomalous magnetic moment aμ=(gμ-2)/2 is a fundamental property of the muon particle, which plays a foundation role in the formation of the Standard Model. The first results of the Fermilab Muon g-2 experiment show that the experimental measurement of aμ deviates with the theoretical prediction by 3.3 standard deviation, as in agreement with the previous measurements from the BNL experiment. The combined result of the two experiments is 4.2 standard deviation away from the Standard Model prediction, which provides a strong evidence for new physics, indicating the existence of possible unknown particles or new forces.

参考文献

[1] Anderson C D, Neddermeyer S H. Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level[J]. Physical Review, 1936, 50(4):263.
[2] Abi B, Albahri T, Al-Kilani S, et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm[J]. Physics Review Letters, 2021, 126(14):141801.
[3] Bennett G W, Bousquet B, Brown H N, et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL[J]. Physics Review D, 2006, 73(7):072003.
[4] Aoyama T, Asmussen N, Benayoun M, et al. The anomalous magnetic moment of the muon in the Standard Model[J]. Physics Reports, 2020, 887:1-166.
[5] Bailey J, Borer K, Combley F, et al. Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation[J]. Nuclear Physics B, 1979, 150(1):1-75.
[6] Fermilab. Muon g-2[EB/OL].[2021-02-05]. https://muon-g-2.fnal.gov.
[7] Albahri T, Anastasi A, Anisenkov A, et al. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment[J]. Physics Review D, 2021, 103(7):072002.
[8] Albahri T, Anastasi A, Badgley K, et al. Magnetic-field measurement and analysis for the Muon g-2 Experiment at Fermilab[J]. Physics Review A, 2021, 103(4):042208.
[9] Athron P, Balázs C, Jacob D H J, et al. New physics explanations of aμ in light of the FNAL muon g-2 measurement[J]. The Journal of High Energy Physics, 2021(9):80.
[10] Everett L L, Kane G L, Rigolin S, et al. Implications of Muon g-2 for supersymmetry and for discovering superpartners directly[J]. Physics Review Letters, 2001, 86(16):3484.
[11] Ibe M, Yanagida T T, Yokozaki N. Muon g-2 and 125 GeV Higgs in split-family supersymmetry[J]. Journal of High Energy Physics, 2013(8):1-16.
[12] Endo M, Hamaguchi K, Iwamoto S, et al. Higgs mass, muon g-2, and LHC prospects in gauge mediation models with vectorlike matters[J]. Physics Review D, 2012, 85(9):095012.
[13] Dermisek R, Hermanek K, McGinnis N. Highly enhanced contributions of heavy higgs bosons and new leptons to muon g-2 and prospects at future colliders[J]. Physics Review Letters, 2021, 126(19):191801.
[14] Lindner M, Platscher M, Queiroz F S. A call for new physics:The muon anomalous magnetic moment and lepton flavor violation[J]. Physics Reports, 2018, 731:1-82.
[15] Liu X W, Bian L, Li X Q, et al. Type-III two Higgs doublet model plus a pseudoscalar confronted with h→ μτ, muon g-2 and dark matter[J]. Nuclear Physics B, 2016, 909:507-524.
[16] Ferreira P M, Gonçalves B L, Joaquim F R, et al. (g-2)μ in the 2HDM and slightly beyond-An updated view[J]. Physical Review D, 2021, 104:053008.
[17] Borsanyi S, Fodor Z, Guenther J N, et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD[J]. Nature, 2021, 593(7857):51-55.
[18] Keshavarzi A, Marciano W J, Passera M, et al. Muon g-2 and Δα connection[J]. Physics Review D, 2020, 102(3):033002.
[19] Crivellin A, Hoferichter M, Manzari C A, et al. Hadronic vacuum polarization:(g-2)μ versus global electroweak fits[J]. Physics Review Letters, 2020, 125(9):091801.
[20] Muon g-2/EDM experiment at J-PARC[EB/OL].[2021-02-12]. https://g-2.kek.jp.
[21] Abe M, Bae S, Beer G, et al. A new approach for measuring the muon anomalous magnetic moment and electric dipole moment[J]. Progress of Theoretical and Experimental Physics, 2019(5):053C02.
[22] 中国散裂中子源工程[EB/OL].[2021-02-15]. http://csns.ihep.cas.cn.
[23] Tang J Y, Ni X J, Ma X Y, et al. EMuS muon facility and its application in the study of magnetism[J]. Quantum Beam Science, 2018, 2(4):23.
[24] 强流重离子加速器装置[EB/OL].[2021-03-11]. http://hiaf.impcas.ac.cn.
[25] Xiao G Q, Xu H S, Wang S C. HIAF and CiADS national research facilities:Progress and prospect[J]. Nuclear Physics Review, 2017, 34(3):275-283.
[26] Sun Z Y, Chen L W, Cai H J, et al. Producing high intensity muon, antiproton beams and related physical researches in the HIAF accelerators[J]. Science China Physics, Mechanics & Astronomy, 2020, 50(11):112010.
文章导航

/