专题:“双碳”引领城乡绿色发展

“双碳”目标下寒冷地区城市滨水住区夏季的热环境特征——以天津市为例

  • 王柳璎 ,
  • 李阳力 ,
  • 陈天
展开
  • 1. 天津大学建筑学院, 天津 300072;
    2. 天津大学城市空间与城市设计研究所, 天津 300072;
    3. 天津市旧城改造生态化技术工程中心, 天津 300072
王柳璎,博士研究生,研究方向为城市设计与建筑设计,电子信箱:huimingfocha@163.com

收稿日期: 2021-12-10

  修回日期: 2022-03-11

  网络出版日期: 2022-04-27

基金资助

国家自然科学基金面上项目(52078329)

Summer thermal environment characteristics of urban waterfront residential districts in cold climate zone with “dual carbon” goals——Case study of Tianjin city

  • WANG Liuying ,
  • LI Yangli ,
  • CHEN Tian
Expand
  • 1. School of Architecture, Tianjin University, Tianjin 300072, China;
    2. Institute of Urban Space and Urban Design, Tianjin University, Tianjin 300072, China;
    3. Old City Reconstruction Ecological Technology Engineering Center, Tianjin University, Tianjin 300072, China

Received date: 2021-12-10

  Revised date: 2022-03-11

  Online published: 2022-04-27

摘要

为响应“双碳”政策,进一步明确中国寒冷地区滨水住区夏季热环境特征,基于天津市91个典型滨水住区的Landsat-8遥感影像与空间环境因子,运用相关性分析与多元线性回归方法得到热环境特征。结果表明:面状水体热环境调节作用优于线状水体,住区平均热岛强度差值达1.57℃;住区热环境与建筑密度、滨水距离呈显著正相关,与平均建筑高度、归一化植被指数、周边水面率呈显著负相关,其中归一化植被指数与周边水面率影响权重最高;不同建筑布局住区热环境的影响因子存在差异,点阵式住区平均热岛强度最低,围合式住区最高;当建筑密度小于19.08%,通过减小住区滨水距离、增加周边水面率能有效调节热环境。提出了改善寒冷地区滨水住区热环境的建议。

本文引用格式

王柳璎 , 李阳力 , 陈天 . “双碳”目标下寒冷地区城市滨水住区夏季的热环境特征——以天津市为例[J]. 科技导报, 2022 , 40(6) : 46 -55 . DOI: 10.3981/j.issn.1000-7857.2022.06.006

Abstract

In the background of the "dual carbon" policy, to further clarify the summer thermal environment characteristics of the waterfront settlement in the cold areas of China, the Landsat-8 remote sensing images and the impact factors of 91 typical waterfront settlements in Tianjin, along with the correlation analysis and the multiple linear regression method are used to obtain the characteristics of the thermal environment. It is shown that the thermal environment regulation effect of the planar water is better than that of the linear water, with the difference of the UHI effect up to 1.57℃. The UHI effect has a significant positive correlation with the building density (BD) and the waterfront distance (WD), and is significantly negatively correlated with the average building height (H), the normalized difference vegetation index (NDVI), and the water surface ratio within a radius of 1 km (WR), with the NDVI and the WR having the highest influence weight. There are differences in the influencing factors of the UHI effect in the settlement with different building layouts. The lattice-type settlement has the lowest UHI effect, and the enclosed-type settlement has the highest UHI effect. When the BD is less than 19.08%, the thermal environment can be adjusted well by reducing the WD and increasing the WR. Finally, recommendations for the thermal environment improvement of the waterfront settlements in cold regions are made.

参考文献

[1] 田喆. 城市热岛效应分析及其对建筑空调采暖能耗影响的研究[D]. 天津:天津大学, 2005.
[2] Molders N. Landscape changes over a region in east germany and their impact upon the processes of its atmospheric water-cycle[J]. Meteorology and Atmospheric Physics, 1998, 68:79-98.
[3] House-Peters L A, Chang H. Modeling the impact of land use and climate change on neighborhood-scale evaporation and nighttime cooling:A surface energy balance approach[J]. Landscape and Urban Planning, 2011, 103(2):139-155.
[4] Ortega-Álvarez R, Macgregor-Fors I. Living in the big city:Effects of urban land-use on bird community structure, diversity, and composition[J]. Landscape and Urban Planning, 2009, 90(3):189-195.
[5] 耿树丰, 任嘉义, 杨俊, 等. 局地气候区视角下的城市热环境研究[EB/OL].[2021-11-29]. https://ifffgc1d129f57bb244a4hwo0upcv9knk96u0cfgfy.eds.tju.edu.cn/kcms/detail/11.2031.Q.20211125.1757.044.html.
[6] Howard L. The climate of london[M]. London:ScienceOpen, 1818.
[7] Weng Q. Thermal infrared remote sensing for urban climate and environmental studies:Methods, applications, and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4):335-344.
[8] Munizgaal L P, Pezzuto C C, de Carvalho M F H, et al. Urban geometry and the microclimate of street canyons in tropical climate[J]. Building and Environment, 2020, 169:106547.
[9] 郭晓晖, 包志毅, 吴凡, 等. 街道可视因子对夏季午后城市街道峡谷微气候和热舒适度的影响研究[J]. 中国园林, 2021, 37(9):71-76.
[10] Guo G, Zhou X, Wu Z et al. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China[J]. Environmental Modelling & Software, 2016, 84:427-439.
[11] 陶聪, 李佳芯, 赖达祎. 城市公共活动空间质量评价与优化策略研究[J]. 规划师, 2021, 37(21):75-83.
[12] 于洋, 王昕歌. 面向生态系统服务功能的城市绿地碳汇量估算研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(1):95-102.
[13] Yu Z, Yang G, Zuo S, et al. Critical review on the cooling effect of urban blue green space:A threshold-size perspective[J]. Urban Forestry& Urban Greening, 2020, 49:126630.
[14] 姜允芳, 李悦, 石铁矛, 等. 城市住区热环境效果模拟与生态节能性研究[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(6):1145-1152.
[15] 李坤明, 张华静, 赵立华. 基于经验热舒适指标的湿热地区居住区室外空间景观要素优化配置研究[J]. 建筑科学, 2020, 36(10):158-166.
[16] 金雨蒙, 金虹, 康健, 等. 严寒地区城市住区公共空间热环境及热舒适实测研究[J]. 建筑科学, 2021, 37(12):29-37.
[17] 范悦, 钟鸿峰, 何玥儿, 等. 室外热环境品质提升视角下既有住区建筑层级更新策略研究[J]. 建筑学报, 2022(2):46-51.
[18] 薛思寒, 马悦, 王琨. 寒冷地区绿化指标对住区室外舒适度的多途径调控分析——以郑州市为例[J]. 南京林业大学学报(自然科学版), 2022, 46(1):210-218.
[19] 中华人民共和国住房和城乡建设部. 民用建筑热工设计规范(GB 50176-93)[S]. 北京:中国计划出版社, 1993.
[20] 中华人民共和国住房和城乡建设部, 城市居住区热环境设计标准(JGJ286-2013)[S]. 北京:建筑工业出版社, 2013.
[21] 钟小敏, 李兆江. 中国省市区地理:天津地理[M]. 北京:北京师范大学出版社, 2011:43-44.
[22] 孟凡超, 黄鹤, 郭军, 等.天津城市热岛强度的精细化时空分布特征研究[J]. 生态环境学报, 2020, 29(9):1822-1829.
[23] 陈爱莲, 孙然好, 陈利顶. 绿地格局对城市地表热环境的调节功能[J]. 生态学报, 2013, 33(8):2372-2380.
[24] 马童, 陈天. 城市滨河区空间形态对近地面通风影响机制及规划响应[J]. 城市发展研究, 2021, 28(7):37-42+48.
[25] 周淑贞, 张超. 城市气候学导论[M]. 上海:华东师范大学出版社, 1985:85.
[26] 中华人民共和国住房和城乡建设部. 城市居住区规划设计标准(GB50180-2018)[S]. 北京:建筑工业出版社, 2018.
[27] 天津市河道管理条例[J]. 天津市人民代表大会常务委员会公报, 2011(4).
[28] Zhu X M, Wang X H, Yan D J, et al. Analysis of remotely-sensed ecological indexes' influence on urban thermal environment dynamic using an integrated ecological index:A case study of Xi'an, China[J]. International Journal of Remote Sensing, 2019, 40(9):3421-3447.
[29] Voogt J A. Encyclopedia of global environmental change[M]. Chichester:John Wiley & Sons, Ltd, 2002:660-666.
[30] Amiri R, Weng Q, Alimohammadi A, et al. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran[J]. Remote Sensing of Environment, 2009, 113(12):2606-2617.
[31] 李斌, 邢汉发, 刘烨菲. 基于MGWR模型的城市景观与热环境关系分析[EB/OL].[2021-10-08]. http://kns.cnki.net/kcms/detail/61.1294.N.20210719.1554.006.html.
[32] 吴昌广, 夏丽丽, 林姚宇, 等. 深圳市典型住区热环境特征及其影响因子分析[J]. 哈尔滨工业大学学报, 2015, 47(6):59-62.
[33] 刘诗喆, 谢苗苗, 武蓉蓉, 等. 地理单元划分对城市热环境响应规律的影响——以北京为例[J]. 地理科学进展, 2021, 40(6):1037-1047.
[34] 宋晓程, 刘京, 赵宇. 北方滨水区街区形态对城市微气候的影响[J]. 建筑科学, 2019, 35(10):191-198.
[35] Gordon B. Microclimates of a suburban Colorado(USA) landscape and implications for planning and design[J]. Landscape and Urban Planning (Amsterdam), 2000(49):97-114.
[36] Huang L M, Li J L, Zhao D H, et al. A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China[J]. Building and Environment, 2008, 43(1):7-17.
[37] 李坤明, 张华静, 赵立华. 基于经验热舒适指标的湿热地区居住区室外空间景观要素优化配置研究[J]. 建筑科学, 2020, 36(10):158-166.
[38] 张惠远, 饶胜, 迟妍妍, 等. 城市景观格局的大气环境效应研究进展[J]. 地球科学进展, 2006(10):1025-1032.
[39] 傅抱璞. 我国不同自然条件下的水域气候效应[J]. 地理学报, 1997(3):56-63.
[40] 李书严, 轩春怡, 李伟, 等. 城市中水体的微气候效应研究[J]. 大气科学, 2008(3):552-560.
[41] 岳文泽, 徐丽华. 城市典型水域景观的热环境效应[J]. 生态学报, 2013, 33(6):1852-1859.
文章导航

/