专题:稀土资源可持续发展战略

碳中和背景下中国电动车产业稀土需求预测

  • 王晨阳 ,
  • 汪鹏 ,
  • 汤林彬 ,
  • 陈玮 ,
  • 陈伟强
展开
  • 1. 中国科学院城市环境研究所, 中国科学院城市环境与健康重点实验室, 厦门 361021;
    2. 中国科学院赣江创新研究院, 赣州 341100;
    3. 中国科学院大学, 北京 100049
王晨阳,研究实习员,研究方向为金属供需预测,电子信箱:ischenyangwang@foxmail.com

收稿日期: 2021-12-28

  修回日期: 2022-04-14

  网络出版日期: 2022-06-10

基金资助

国家自然科学基金项目(71904182,42061049);中国科学院赣江创新研究院自主部署项目(E055B004);中国科学院重点部署项目(ZDRW-CN-2021-3)

Forecast of rare earth demand driven by electric vehicle industry in China: 2010-2060

  • WANG Chenyang ,
  • WANG Peng ,
  • TANG Linbin ,
  • CHEN Wei ,
  • CHEN Weiqiang
Expand
  • 1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341100, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-12-28

  Revised date: 2022-04-14

  Online published: 2022-06-10

摘要

构建了纯电动乘用车产业发展的3种情景,即1.5℃温控情景、现有政策情景和基准情景,并采用动态物质流分析方法计算了不同情景下纯电动乘用车的保有量和需求量,预测了纯电动乘用车产业发展引起的镝、钕和镨3种稀土元素的未来需求量、报废量和潜在回收量。结果显示:(1)在这3种情景下,纯电动乘用车保有量均呈现增长趋势;(2)在现有配额制下,钕、镝和镨的中国年产能为15219、625、4509 t,而未来需求量是5700~25900、1400~6100、600~2600 t,如果不增加产能,镝元素的产能将无法满足纯电动乘用车发展的需求,钕元素的产能仅可以满足纯电动乘用车中短期(2020—2040年)的发展需求,镨元素的产能可以满足未来纯电动乘用车发展的需求;(3)回收纯电动乘用车中的稀土元素可以有效减少稀土原矿的需求量,从而降低稀土资源一次供应量在总需求量中的比例。因此,建议分元素管控稀土元素的供应,提高针对钕、镝元素的指令性生产计划指标,加强从电动乘用车中回收稀土元素的技术研发,建立含稀土的固体废弃物如电动车、风电涡轮机的有效回收体系。

本文引用格式

王晨阳 , 汪鹏 , 汤林彬 , 陈玮 , 陈伟强 . 碳中和背景下中国电动车产业稀土需求预测[J]. 科技导报, 2022 , 40(8) : 50 -61 . DOI: 10.3981/j.issn.1000-7857.2022.08.005

Abstract

The electrification of the transportation sector is an important initiative to achieve the carbon neutrality target. It is important to accurately determine the future demand for the rare earth elements (REEs) from the sector of the battery electric passenger vehicle (BEPV), to predict the recovery potential of the materials containing REEs, and to dynamically assess the relationship between the supply and the demand, for promoting the electrification of the transportation sector and ensuring the security of the supply of the REEs. In this paper, three scenarios are identified for the development of the BEPV, namely, the business as the usual scenario, the state policy scenario and the scenario of 1.5 degrees (temperature rising) scenario. By a dynamic material flow analysis, the stocks and the flows of the BEPV are calculated; the future demand, the end-of-life volume and the potential recycling of neodymium (Nd), dysprosium (Dy) and praseodymium (Pr) are predicted. It is shown that:(i) under all scenarios, the BEPV stock shows a growing trend; (ii) the current annual production capacity of Nd, Dy and Pr in China is 15219, 625 and 4509 t, while the future demand is 5700-25900, 1400-6100 and 600-2600 t. If the production capacity is not increased, the demand for Dy of BEPV can not be met, and the demand for Nd of BEPV can only be met in the short term (2020-2040); (iii) recovering the REEs from the BEPV can effectively reduce the demand for the REEs from the virgin source. Therefore, it is recommended to control the supply of the REEs according to each element's features, to increase the directive production plan target for Nd and Dy, to strengthen the technology research and development for recovering the REEs from the BEPV, and to establish an effective recycling system for solid wastes containing the REEs, such as electric vehicles and wind turbines.

参考文献

[1] 习近平.继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[EB/OL].(2020-12-12)[2021-06-01].http://www.xinhuanet.com/politics/leaders/2020-12/12/c_1126853600.htm.
[2] 王灿,张雅欣.碳中和愿景的实现路径与政策体系[J].中国环境管理, 2020, 12(6):58-64.
[3] Climate Action Tracker.China going carbon neutral before 2060 would lower warming projections by around 0.2 to 0.3 degrees C[EB/OL].(2020-09-23)[2021-06-01].https://climateactiontracker.org/press/china-carbonneutral-before-2060-would-lower-warming-projectionsby-around-2-to-3-tenths-of-a-degree.
[4] Omasta T J, Peng X, Miller H A, et al.Beyond 1.0 W cm-2 performance without platinum:The beginning of a new era in anion exchange membrane fuel cells[J].Journal of The Electrochemical Society, 2018, 165(15):J3039-J3044.
[5] Li J S, Peng K, Wang P, et al.Critical rare-earth elements mismatch global wind-power ambitions[J].One Earth, 2020, 3(1):116-125.
[6] Zhang H M, Feng T T, Yang Y S.Influencing factors and critical path of inter-sector embodied heavy rare earth consumption in China[J].Resources Policy, 2022, 75:102492.
[7] 能源转型委员会,落基山研究所.中国2050:一个全面实现现代化国家的零碳图景[EB/OL].[2021-06-01].https://www.rmi-china.com/static/upfile/news/nfiles/ETC.pdf.
[8] 蒋小谦,奚文怡,蒋慧,等.城市的交通排放:路径分析方法、关键举措和对策建议[EB/OL].[2021-06-01].https://www.wri.org.cn/report/202004/Achieving-Net-Zero-Carbon-Emission-of-Transportation-Sector-CN.
[9] Knobloch V, Zimmermann T, Gößling-Reisemann S.From criticality to vulnerability of resource supply:The case of the automobile industry[J].Resources, Conservation and Recycling, 2018, 138:272-282.
[10] Restrepo E, Løvik A N, Wager P, et al.Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles[J].Environmental Science & Technology, 2017, 51(3):1129-1139.
[11] 杨朋.稀土永磁电机的应用现状及其发展趋势[J].中国设备工程, 2019(1):190-191.
[12] 郭咏梅,王世伟,白雪,等.稀土永磁电机成汽车领域节能减排必由之路[J].稀土信息, 2018(7):8.
[13] Alonso E, Wallington T, Sherman A, et al.An assessment of the rare earth element content of conventional and electric vehicles[J].SAE International Journal of Materials and Manufacturing, 2012, 5(2):473-477.
[14] Valero A, Valero A, Calvo G, et al.Global material requirements for the energy transition.An exergy flow analysis of decarbonisation pathways[J].Energy, 2018, 159:1175-1184.
[15] Månberger A, Stenqvist B.Global metal flows in the renewable energy transition:Exploring the effects of substitutes, technological mix and development[J].Energy Policy, 2018, 119:226-241.
[16] Li X Y, Ge J P, Chen W Q, et al.Scenarios of rare earth elements demand driven by automotive electrification in China:2018-2030[J].Resources, Conservation and Recycling, 2019, 145:322-331.
[17] Elshkaki A.Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications[J].Energy, 2020, 202:117697.
[18] Watari T, McLellan B C, Ogata S, et al.Analysis of potential for critical metal resource constraints in the international energy agency's long-term low-carbon energy scenarios[J].Minerals, 2018, 8(4):156.
[19] Zhou B L, Li Z X, Chen C C.Global potential of rare earth resources and rare earth demand from clean technologies[J].Minerals, 2017, 7(11):203.
[20] Rademaker J H, Kleijn R, Yang Y.Recycling as a strategy against rare earth element criticality:A systemic evaluation of the potential yield of NdFeB magnet recycling[J].Environmental science & technology, 2013, 47(18):10129-10136.
[21] Schulze R, Buchert M.Estimates of global REE recycling potentials from NdFeB magnet material[J].Resources, Conservation and Recycling, 2016, 113:12-27.
[22] 中华人民共和国公安部.道路交通管理机动车类型:GA 802-2019[S].北京:中华人民共和国公安部, 2019.
[23] 薛露露,靳雅娜,禹如杰,等.中国道路交通2050年"净零"排放路径研究[EB/OL].[2021-06-01].https://wri.org.cn/sites/default/files/2021-12/toward-net-zero-emissions-road-transport-sector-china-CN.pdf.
[24] 宋璐璐,曹植,代敏.中国乘用车物质代谢与碳减排策略[J].资源科学, 2021, 43(3):501-512.
[25] Pauliuk S, Dhaniati N M A, Müller D B.Reconciling sectoral abatement strategies with global climate targets:The case of the Chinese passenger vehicle fleet[J].Environmental science & technology, 2012, 46(1):140-147.
[26] Davis J, Geyer R, Ley J, et al.Time-dependent material flow analysis of iron and steel in the UK.Part 2.Scrap generation and recycling[J].Resources, Conservation and Recycling, 2007, 51(1):118-140.
[27] Dunant C F, Shah T, Drewniok M P, et al.A new method to estimate the lifetime of long-life product categories[J].Journal of Industrial Ecology, 2021, 25(2):321-332.
[28] Watari T, McLellan B C, Giurco D, et al.Total material requirement for the global energy transition to 2050:A focus on transport and electricity[J].Resources, Conservation and Recycling, 2019, 148:91-103.
[29] Weymar E, Finkbeiner M.Statistical analysis of empirical lifetime mileage data for automotive LCA[J].The International Journal of Life Cycle Assessment, 2016, 21(2):215-223.
[30] 公安部交通管理局.公安部:截至2019年底全国新能源汽车保有量381万辆[EB/OL].(2020-01-09)[2021-06-01].https://www.china5e.com/news/news-1080397-1.html.
[31] 连一席.全球动力电池竞争报告:2019[EB/OL].[2021-06-01].https://pdf.dfcfw.com/pdf/H3_AP201912201372266094_1.pdf?1576866211000.pdf.
[32] United Nations.World population prospects 2019[EB/OL].[2021-06-01].https://population.un.org/wpp.
[33] Oscar D, Josh M, Ben S, et al.Estimating the fuel efficiency technology potential of heavy-duty trucks in major markets around the world[EB/OL].[2021-06-01].https://theicct.org/publications/estimating-fuel-efficiency-technology-potential-heavy-duty-trucks-major-mar-kets-around.
[34] Valero A, Valero A, Calvo G, et al.Global material requirements for the energy transition.An exergy flow analysis of decarbonisation pathways[J].Energy, 2018, 159:1175-1184.
[35] Fishman T, Myers R J, Rios O, et al.Implications of emerging vehicle technologies on rare earth supply and demand in the United States[J].Resources, 2018, 7(1):1-15.
[36] Habib K, Wenzel H.Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling[J].Journal of Cleaner Production, 2014, 84:348-359.
[37] Hoenderdaal S, Espinoza L T, Marscheider-Weidemann F, et al.Can a dysprosium shortage threaten green energy technologies?[J].Energy, 2013, 49:344-355.
[38] Valero A, Valero A, Calvo G, et al.Material bottlenecks in the future development of green technologies[J].Renewable and Sustainable Energy Reviews, 2018, 93:178-200.
[39] Deetman S, Pauliuk S, van Vuuren D P, et al.Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances[J].Environmental Science and Technology, 2018, 52(8):4950-4959.
[40] De Koning A, Kleijn R, Huppes G, et al.Metal supply constraints for a low-carbon economy?[J].Resources, Conservation and Recycling, 2018, 129:202-208.
[41] 《中国稀土学会年鉴》编辑委员会.中国稀土学会年鉴2018[R].北京:中国稀土学会, 2018.
[42] Binnemans K, Jones P T, Blanpain B, et al.Recycling of rare earths:A critical review[J].Journal of cleaner production, 2013, 51:1-22.
[43] Zhang Y, Gu F, Su Z, et al.Hydrometallurgical recovery of rare earth elements from NdFeB permanent magnet scrap:A review[J].Metals-Open Access Metallurgy Journal, 2020, 10(841):841.
[44] Du X, Graedel T E.Uncovering the end uses of the rare earth elements[J].Science of the Total Environment, 2013, 461:781-784.
[45] Zhang S, Ding Y, Liu B, et al.Supply and demand of some critical metals and present status of their recycling in WEEE[J].Waste Management, 2017, 65:113-127.
文章导航

/