专题:运动行为与大脑健康

运动干预脑衰老:新进展与再认识

  • 李雪 ,
  • 孙君志 ,
  • 金毓 ,
  • 王璐
展开
  • 成都体育学院运动医学与健康学院, 成都 610041
李雪,教授,研究方向为运动促进脑健康,电子信箱:lixue2078@126.com

收稿日期: 2022-03-10

  修回日期: 2022-04-20

  网络出版日期: 2022-07-20

基金资助

国家自然科学基金项目(31900848);成都体育学院运动医学重点实验室创新课题重点项目(CX21A02);成都体育学院运动医学四川省重点实验室资助项目(2022-A039)

Exercise intervention of brain aging: New progress and revisit

  • LI Xue ,
  • SUN Junzhi ,
  • JIN Yu ,
  • WANG Lu
Expand
  • School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China

Received date: 2022-03-10

  Revised date: 2022-04-20

  Online published: 2022-07-20

摘要

随着人口老龄化的日益严峻,衰老及其带来的多种慢性疾病已成为亟待解决的社会问题。综述了脑衰老发病的复杂生物学机制,包括胶质细胞激活及炎症反应、氧化应激损伤、干细胞耗竭、DNA修复损伤、线粒体功能障碍等机制的研究进展;总结了近些年来运动与脑健康领域出现的新方法,包括表观遗传学、外泌体、肠道菌群、运动因子、异体共生、组学分析等的研究和应用;提出了运动干预脑衰老从基础到临床转化的可行性思考。

本文引用格式

李雪 , 孙君志 , 金毓 , 王璐 . 运动干预脑衰老:新进展与再认识[J]. 科技导报, 2022 , 40(10) : 49 -59 . DOI: 10.3981/j.issn.1000-7857.2022.10.005

Abstract

The aging and the chronic diseases caused by the aging are an urgent social problem in facing the ever increased aging population. This paper reviews the complex biological mechanisms of the brain aging:the glial cell activation and the inflammatory response, the oxidative stress damage, the stem cell depletion, the DNA repair damage, the mitochondrial dysfunction and other related issues. The emerging methods in the field of the exercise and the brain health in recent years include the research and applications of the epigenetics, the exosomes, the intestinal flora, the exercise factors, the allogeneic symbiosis, and the omics analysis. In the meantime, it is suggested that the aging is not a disease, and it is proposed to pay attention to the problem of the exercise pills and the feasibility of the transformation from basic to clinical of the exercise intervention of the brain aging. In the future, it would be a challenging task for scientists and exercise professionals to explore and develop precise exercise prescriptions for delaying the brain aging.

参考文献

[1] Deweerdt S.Prevention:Activity is the best medicine[J].Nature, 2011, 475(7355):16-17.
[2] Johansson M E, Cameron I G M, Van Der Kolk N M, et al.Aerobic exercise alters brain function and structure in parkinson's disease:A randomized controlled trial[J].Annals of Neurology, 2022, 91(2):203-216.
[3] Valenzuela P L, Castillo-García A, Morales J S, et al.Exercise benefits on Alzheimer's disease:State-of-the-science[J].Ageing Research Reviews, 2020, 62:101108.
[4] Kwak D, Thompson L V J S M, Science H.Frailty:Past, present, and future?[J].Sports Medicine and Health Science, 2021, 3(1):1-10.
[5] Wang Q, Qian L, Chen S H, et al.Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson's disease models[J].Brain, 2015, 138(Pt 5):1247-1262.
[6] Ritzel R M, Crapser J, Patel A R, et al.Age-associated resident memory CD8+T cells in the central nervous system are primed to potentiate inflammation after ischemic brain injury[J].Journal of Immunology, 2016, 196(8):3318-3330.
[7] Sung Y H, Kim S C, Hong H P, et al.Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson's disease mice[J].Life Science, 2012, 91(25/26):1309-1316.
[8] Jensen C S, Bahl J M, Østergaard L B, et al.Exercise as a potential modulator of inflammation in patients with Alzheimer's disease measured in cerebrospinal fluid and plasma[J].Experimental Gerontology, 2019, 121:91-98.
[9] Fang Z H, Lee C H, Seo M K, et al.Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats[J].Neuroscience research, 2013, 76(4):187-194.
[10] Mee-inta O, Zhao Z W, Kou Y M.Physical exercise inhibits inflammation and microglial activation[J].Cells, 2019, 8(7):691.
[11] Ionescu-Tucker A, Cotman C W.Emerging roles of oxidative stress in brain aging and Alzheimer's disease[J].Neurobiology of Aging, 2021, 107:86-95.
[12] Kuhn H G, Toda T, Gage F H.Adult hippocampal neurogenesis:A Coming-of-age story[J].The Journal of Neuroscience, 2018, 38(49):10401-10410.
[13] Grimm S, Hoehn A, Davies K J, et al.Protein oxidative modifications in the ageing brain:Consequence for the onset of neurodegenerative disease[J].Free Radical research, 2011, 45(1):73-88.
[14] Perluigi M, Di Domenico F, Giorgi A, et al.Redox proteomics in aging rat brain:Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process[J].Journal of Neuroscience research, 2010, 88(16):3498-3507.
[15] Schmidlin C J, Dodson M B, Madhavan L, et al.Redox regulation by NRF2 in aging and disease[J].Free Radical Biology and Medicine, 2019, 134:702-707.
[16] Cobley J N, Moult P R, Burniston J G, et al.Exercise improves mitochondrial and redox-regulated stress responses in the elderly:Better late than never![J].Biogerontology, 2015, 16(2):249-264.
[17] Mock J T, Chaudhari K, Sidhu A, et al.The influence of vitamins E and C and exercise on brain aging[J].Experimental Gerontology, 2017, 94:69-72.
[18] López-Otín C, Blasco M A, Partridge L, et al.The hallmarks of aging[J].Cell, 2013, 153(6):1194-1217.
[19] Bernal G M, Peterson D A.Neural stem cells as therapeutic agents for age-related brain repair[J].Aging Cell, 2004, 3(6):345-351.
[20] Zhang H, Kim Y, Ro E J, et al.Hippocampal neurogenesis and neural circuit formation in a cuprizone-induced multiple sclerosis mouse model[J].The Journal of Neuroscience, 2020, 40(2):447-458.
[21] Nicaise A M, Willis C M, Crocker S J, et al.Stem cells of the aging brain[J].Frontiers in Aging Neuroscience, 2020, 12:247.
[22] Ren R, Ocampo A, Liu G H, et al.Regulation of stem cell aging by metabolism and epigenetics[J].Cell Metabolism, 2017, 26(3):460-474.
[23] Liu G H, Qu J, Suzuki K, et al.Progressive degeneration of human neural stem cells caused by pathogenic LRRK2[J].Nature, 2012, 491(7425):603-607.
[24] Fu L, Xu X, Ren R, et al.Modeling xeroderma pigmentosum associated neurological pathologies with patientsderived iPSCs[J].Protein Cell, 2016, 7(3):210-221.
[25] Isaev N K, Stelmashook E V, Genrikhs E E.Neurogenesis and brain aging[J].Reviews in the Neurosciences, 2019, 30(6):573-580.
[26] Adusumilli V S, Walker T L, Overall R W, et al.ROS Dynamics delineate functional states of hippocampal neural stem cells and link to their activity-dependent exit from quiescence[J].Cell Stem Cell, 2021, 28(2):300-314.
[27] Kalamakis G, Brüne D, Ravichandran S, et al.Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain[J].Cell, 2019, 176(6):1407-1419.
[28] Ayhan F, Kulkarni A, Berto S, et al.Resolving cellular and molecular diversity along the hippocampal anteriorto-posterior axis in humans[J].Neuron, 2021, 109(13):2091-2105.
[29] Franjic D, Skarica M, Ma S, et al.Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells[J].Neuron, 2021, doi:10.1016/j.neuron.2021.10.036.
[30] D'Angelo M, Antonosante A, Castelli V, et al.PPARs and energy metabolism adaptation during neurogenesis and neuronal maturation[J].International Journal of Molecular Sciences, 2018, doi:10.3390/ijms19071869.
[31] Vieira M S, Santos A K, Vasconcellos R, et al.Neural stem cell differentiation into mature neurons:Mechanisms of regulation and biotechnological applications[J].Biotechnology Advances, 2018, 36(7):1946-1970.
[32] Zhang W, Qu J, Liu G H, et al.The ageing epigenome and its rejuvenation[J].Nature Reviews:Molecular Cell Biology, 2020, 21(3):137-150.
[33] Patel J, Baptiste B A, Kim E, et al.DNA damage and mitochondria in cancer and aging[J].Carcinogenesis, 2020, 41(12):1625-1634.
[34] Gospodinov A, Vaissiere T, Krastev D B, et al.Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection[J].Molecular and Cellular Biology, 2011, 31(23):4735-4745.
[35] van der Horst G T, Meira L, Gorgels T G, et al.UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice[J].DNA Repair, 2002, 1(2):143-157.
[36] Katyal S, el-Khamisy S F, Russell H R, et al.TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo[J].The Embo Journal, 2007, 26(22):4720-4731.
[37] Pao P C, Patnaik D, Watson L A, et al.HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease[J].Nature Communications, 2020, 11(1):2484.
[38] Harman D.The biologic clock:The mitochondria?[J].Journal of the Amercian Geriatrics Society, 1972, 20(4):145-147.
[39] Jang J Y, Blum A, Liu J, et al.The role of mitochondria in aging[J].The Journal of Clinical Investigation, 2018, 128(9):3662-3670.
[40] Reddy P H.Mitochondrial medicine for aging and neurodegenerative diseases[J].Neuromolecular Medicine, 2008, 10(4):291-315.
[41] Reddy P H.Mitochondrial dysfunction in aging and Alzheimer's disease:Strategies to protect neurons[J].Antioxidants and Redox Signaling, 2007, 9(10):1647-1658.
[42] Reddy P H, Reddy T P.Mitochondria as a therapeutic target for aging and neurodegenerative diseases[J].Current Alzheimer Research, 2011, 8(4):393-409.
[43] Shigenage M K, Hagen T M, Ames B N.Oxidative damage and mitochondrial decay in aging[J].Proceedings of the National Academy of Sciences of the Unites States of America, 1994, 91(23):10771-10778.
[44] Bertoni-Freddari C, Balietti M, Giorgetti B, et al.Selective decline of the metabolic competence of oversized synaptic mitochondria in the old monkey cerebellum[J].Rejuvenation Research, 2008, 11(2):387-391.
[45] Fontana L, Pariridge L, Longo V D.Extending healthy life span-from yeast to humans[J].Science, 2010, 328(5976):321-326.
[46] Sahin E, Depinho R A.Linking functional decline of telomeres, mitochondria and stem cells during ageing[J].Nature, 2010, 464(7288):520-528.
[47] Kumar S, Lombard D B.Finding Ponce de Leon's pill:Challenges in screening for anti-aging molecules[J].F1000Research, 2016, doi:10.12688/f1000research.7821.1.
[48] 高杰, 沈成, 黄新河.衰老的表观遗传调控机制[J].中国生物化学与分子生物学报, 2017, 33(11):1098-1104.
[49] Unnikrishnan A, Freeman W M, Jackson J, et al.The role of DNA methylation in epigenetics of aging[J].Pharmacology Therapeutics, 2019, 195:172-185.
[50] Sellami M, Bragazzi N, Prince M S, et al.Regular, intense exercise training as a healthy aging lifestyle strategy:Preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime[J].Frontiers in Genetics, 2021, 12:652497.
[51] Zhang F F, Cardarelli R, Carroll J, et al.Physical activity and global genomic DNA methylation in a cancerfree population[J].Epigenetics, 2011, 6(3):293-299.
[52] Nakajima K, Takeoka M, Mori M, et al.Exercise effects on methylation of ASC gene[J].International Journal of Sports Medicine, 2010, 31(9):671-675.
[53] Barrès R, Yan J, Egan B, et al.Acute exercise remodels promoter methylation in human skeletal muscle[J].Cell Metabolism, 2012, 15(3):405-411.
[54] De Meireles L C, Bertoldi K, Cechinel L R, et al.Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats[J].Neuroscience Letters, 2016, 634:19-24.
[55] De Meireles L C F, Galvão F Jr, Walker D M, et al.Exercise modalities improve aversive memory and survival rate in aged rats:Role of hippocampal epigenetic modifications[J].Molecular Neurobiology, 2019, 56(12):8408-8419.
[56] Fraga I, Weber C, Galiano W B, et al.Effects of a multimodal exercise protocol on functional outcomes, epigenetic modulation and brain-derived neurotrophic factor levels in institutionalized older adults:A quasi-experimental pilot study[J].Neural Regeneration Research, 2021, 16(12):2479-2485.
[57] Grillari J, Hackl M, Grillari-Voglauer R.miR-17-92 cluster:Ups and downs in cancer and aging[J].Biogerontology, 2010, 11(4):501-506.
[58] Menghini R, Casagraned V, Cardellini M, et al.MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1[J].Circulation, 2009, 120(15):1524-1532.
[59] Hu Z, Klein J D, Mitch W E, et al.MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways[J].Aging(Albany NY), 2014, 6(3):160-175.
[60] Guo Y, Li P, Gao L, et al.Kallistatin reduces vascular senescence and aging by regulating microRNA-34aSIRT1 pathway[J].Aging Cell, 2017, 16(4):837-846.
[61] Zeng Z, Liu Y, Zheng W, et al.MicroRNA-129-5p alleviates nerve injury and inflammatory response of Alzheimer's disease via downregulating SOX6[J].Cell Cycle, 2019, 18(22):3095-3110.
[62] Li Z, Chen Q, Liu J, et al.Physical exercise ameliorates the cognitive function and attenuates the neuroinflammation of Alzheimer's disease via miR-129-5p[J].Dementia and Geriatric Cognitive Disorders, 2020, 49(2):163-169.
[63] Yoon J H, Abdelmohsen K, Gorospe M.Posttranscriptional gene regulation by long noncoding RNA[J].Journal of Molecular Biology, 2013, 425(19):3723-3730.
[64] He Y, Qiang Y.Mechanism of autonomic exercise improving cognitive function of Alzheimer's disease by regulating lncRNA SNHG14[J].American Journal of Alzheimer's Disease and Other Dementias, 2021, 36:15333175211027681.
[65] Modarresi F, Pedran Fatemi R, Razavipour S F, et al.A novel knockout mouse model of the noncoding antisense Brain-Derived Neurotrophic Factor (BDNF) gene displays increased endogenous BDNF protein and improved memory function following exercise[J].Heliyon, 2021, 7(7):e07570.
[66] D'anca M, Fenoglio C, Serpente M, et al.Exosome determinants of physiological aging and age-related neurodegenerative diseases[J].Frontiers in Aging Neuroscience, 2019, 11:232.
[67] Soria F N, Pampliega O, Bourdenx M, et al.Exosomes, an unmasked culprit in neurodegenerative diseases[J].Frontiers Neuroscience, 2017, 11:26.
[68] Xu D, Tahara H.The role of exosomes and microRNAs in senescence and aging[J].Advanced Drug Delivery Reviews, 2013, 65(3):368-375.
[69] Sun F, Fu H, Liu Q, et al.Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest[J].FEBS Letters, 2008, 582(10):1564-1568.
[70] Xu D, Takeshita F, Hino Y, et al.miR-22 represses cancer progression by inducing cellular senescence[J].The Journal of Cell Biology, 2011, 193(2):409-424.
[71] Nair V D, Ge Y, Li S, et al.Sedentary and trained older men have distinct circulating exosomal microRNA Profiles at baseline and in response to acute exercise[J].Frontiers in Physiology, 2020, 11:605.
[72] Chaturvedi P, Kalani A, Medina I, et al.Cardiosome mediated regulation of MMP9 in diabetic heart:Role of mir29b and mir455 in exercise[J].Journal of Cellular and Molecular Medicine, 2015, 19(9):2153-2161.
[73] Frühbeis C, Helmig S, Tug S, et al.Physical exercise induces rapid release of small extracellular vesicles into the circulation[J].Journal of Extracellular Vesicles, 2015, 4:28239.
[74] Yang X, Yu D, Xue L, et al.Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice[J].Acta Pharmaceutica Sinica B, 2020, 10(3):475-487.
[75] Yoshimoto S, Mitsuyama E, Yoshida K, et al.Enriched metabolites that potentially promote age-associated diseases in subjects with an elderly-type gut microbiota[J].Gut Microbes, 2021, 13(1):1-11.
[76] Boehme M, Guzzetta K E, Bastiaanssen T F, et al.Microbiota from young mice counteracts selective age-associated behavioral deficits[J].Nature Aging, 2021, 1(8):666-676.
[77] Xia W J, Xu M L, Yu X J, et al.Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat[J].Gut Microbes, 2021, 13(1):1-24.
[78] Mcfadzean R.Exercise can help modulate human gut microbiota[J/OL].[2022-01-12].https://scholar.colorado.edu/concern/undergraduate_honors_theses/m613mx95s.
[79] Clauss M, Gérard P, Mosca A, et al.Interplay between exercise and gut microbiome in the context of human health and performance[J].Frontiers in Nutrition, 2021, 8:637010.
[80] Kim B, Elzinga S E, Henn R E, et al.The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer's disease[J].Neurobiology of Disease, 2019, 132:104541.
[81] Chennaoui M, Léger D, Gomez-merino D.Sleep and the GH/IGF-1 axis:Consequences and countermeasures of sleep loss/disorders[J].Sleep Medicine Reviews, 2020, 49:101223.
[82] Gleeson M, Bishop N C, Stensel D J, et al.The anti-inflammatory effects of exercise:Mechanisms and implications for the prevention and treatment of disease[J].Nature Reviews Immunology, 2011, 11(9):607-615.
[83] Horowitz A M, Fan X, Bieri G, et al.Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain[J].Science, 2020, 369(6500):167-173.
[84] Townsend L K, Macpherson R E K, Wright D C.New horizon:Exercise and a focus on tissue-brain crosstalk[J].The Journal of Clinical Endocrinology Metabolism, 2021, 106(8):2147-2163.
[85] Lourenco M V, Frozza R L, De Freitas G B, et al.Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models[J].Nature Medicine, 2019, 25(1):165-175.
[86] Pignataro P, Dicarlo M, Zerlotin R, et al.FNDC5/Irisin system in neuroinflammation and neurodegenerative diseases:Update and novel perspective[J].International Journal Molecular Sciences, 2021, doi:10.3390/ijms22041605.
[87] Conboy I M, Conboy M J, Wagers A J, et al.Rejuvenation of aged progenitor cells by exposure to a young systemic environment[J].Nature, 2005, 433(7027):760-764.
[88] Mccay C M, Pope F, Lunsford W, et al.Parabiosis between old and young rats[J].Gerontologia, 1957, 1(1):7-17.
[89] Middeldorp J, Lehallier B, Villeda S A, et al.Preclinical assessment of young blood plasma for Alzheimer disease[J].JAMA Neurology, 2016, 73(11):1325-1333.
[90] De Miguel Z, Khoury N, Betley M J, et al.Exercise plasma boosts memory and dampens brain inflammation via clusterin[J].Nature, 2021, 600(7889):494-499.
[91] Li X, Wang L, Zhang S, et al.Timing-Dependent Protection of Swimming:Exercise against d-Galactose-Induced Aging-Like Impairments in Spatial Learning/Memory in Rats[J].Brain Science, 2019, 9(9):236.
[92] Villeda S A, Plambeck K E, Middeldorp J, et al.Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice[J].Nature Medicine, 2014, 20(6):659-663.
[93] 王权, 王铸, 张振, 等.单细胞测序的技术概述[J].中国医药导刊, 2020, 22:7.
[94] Kan M, Shumyatcher M, Himes B E.Using omics approaches to understand pulmonary diseases[J].Respiratory Research, 2017, 18(1):1-20.
[95] 崔凯, 吴伟伟, 刁其玉.转录组测序技术的研究和应用进展[J].生物技术通报, 2019, 35(7):1-9.
[96] Lee M, Cho H S, Yoon K J, et al.Exercise-induced changes of gene expression in the cerebellum of aged mice[J].Biochemical and Biophysical Research Communications, 2020, 521(4):952-956.
[97] Sanfilippo C, Musumeci G, Castrogiobanni P, et al.Hippocampal transcriptome deconvolution reveals differences in cell architecture of not demented elderly subjects underwent late-life physical activity[J].Journal of Chemical Neuroanatomy, 2021, 113:101934.
文章导航

/