科技创新构建新发展格局

作物种业发展态势分析

  • 刘忠松 ,
  • 陈烈臣 ,
  • 段美娟
展开
  • 湖南农业大学农学院, 长沙 410128
刘忠松,教授,研究方向为作物分子育种,电子信箱:zsliu48@hunau.net

收稿日期: 2022-05-20

  修回日期: 2022-06-07

  网络出版日期: 2022-08-05

基金资助

国家油菜产业技术体系岗位科学家项目(CARS-12);湖南省重大科技项目(2021NK1004)

Current status and future perspective of crop seed industry

  • LIU Zhongsong ,
  • CHEN Liechen ,
  • DUAN Meijuan
Expand
  • College of Agronomy, Hunan Agricultural University, Changsha 410128, China

Received date: 2022-05-20

  Revised date: 2022-06-07

  Online published: 2022-08-05

摘要

种业作为国家的战略性、基础性核心产业,当前面临着多方面的严峻挑战。从种质资源、育种技术和种业体系3个方面简要回顾了种业的发展历程,分析了作物种业的发展现状及当前存在的问题,展望了中国作物种业的发展方向。

本文引用格式

刘忠松 , 陈烈臣 , 段美娟 . 作物种业发展态势分析[J]. 科技导报, 2022 , 40(11) : 15 -23 . DOI: 10.3981/j.issn.1000-7857.2022.11.002

Abstract

As a national strategic and basic core industry, seed industry is facing severe challenges from many aspects. In this paper we first briefly review the development course and comprehensively analyze the current situation of seed industry from three aspects: germplasm resources, breeding technology, and seed industry system. Then we discuss the existing problems, and finally we propose the future direction of crop seed industry in China. These may provide a scientific basis for the formulation of seed industry development policy.

参考文献

[1] Goodman R M, Hauptli H, Crossway A, et al. Gene transfer in crop improvement[J]. Science, 1987, 236(4797):48-54.
[2] Hickey L T, Hafeez A N, Robinson H, et al. Breeding crops to feed 10 billion[J]. Nature Biotechnology, 2019, 37(7):744-754.
[3] Tian Z X, Wang J W, Li J Y, et al. Designing future crops:Challenges and strategies for sustainable agriculture[J]. The Plant Journal, 105(5):1165-1178.
[4] Cushman J C, Denby K, Mittler R. Plant responses and adaptations to a changing climate[J]. The Plant Journal:For Cell and Molecular Biology, 2022, 109(2):319-322.
[5] Zsogon A, Peres L E P, Xiao Y, et al. Enhancing crop diversity for food security in the face of climate uncertainty[J]. The Plant Journal:For Cell and Molecular Biology, 2022, 109(2):402-414.
[6] Kloppenburg J R Jr. First the seed:the political economy of plant biotechnology, 1492-2000[M]. 2nd ed. Madison:University of Wisconsin Press, 2004.
[7] Purugganan M D, Jackson S A. Advancing crop genomics from lab to field[J]. Nature Genetics, 2021, 53(5):595-601.
[8] Daszkowska-Golec A. The landscape of plant genomics after 20 years[J]. Trends in Genetics, 2022, 38(4):310-311.
[9] Song J M, Xie W Z, Wang S, et al. Two gap-free reference genomes and a global view of the centromere architecture in rice[J]. Molecular Plant, 2021, 14(10):1757-1767.
[10] Zhang F, Xue H Z, Dong X R, et al. Long-read sequencing of 111 rice genomes reveals significantly larger pangenomes[J]. Genome Research, 2022, 32(5):853-863.
[11] Sansaloni C, Franco J, Santos B, et al. Diversity analysis of 80000 wheat accessions reveals consequences and opportunities of selection footprints[J]. Nature Communications, 2020, 11:4572.
[12] Huang X H, Huang S W, Li J, et al. The integrated genomics of crop domestication and breeding[J]. Cell, 2022, doi:10.1016/j.cell.2022.04.036.
[13] Wing R A, Purugganan M D, Zhang Q. The rice genome revolution:From an ancient grain to Green Super Rice[J]. Nature Reviews Genetics, 2018, 19(8):505-517.
[14] Yang Z Q, Liang C Y, Wei L L, et al. BnVIR:Bridging the genotype-phenotype gap to accelerate mining of candidate variations underlying agronomic traits in Brassica napus[J]. Molecular Plant, 2022, 15(5):779-782.
[15] 王晓鸣,邱丽娟,景蕊莲,等.作物种质资源表型性状鉴定评价:现状与趋势[J].植物遗传资源学报, 2022, 23(1):12-20.
[16] Reynolds M, Chapman S, Crespo-Herrera L, et al. Breeder friendly phenotyping[J]. Plant Science, 2020, 295:110396.
[17] Scossa F, Alseekh S, Fernie A R. Integrating multiomics data for crop improvement[J]. Journal of Plant Physiology, 2021, 257:153352.
[18] Hirayama T, Mochida K. Plant hormonomics:A key tool for deep physiological phenotyping to improve crop productivity[J]. Plant and Cell Physiology, 2022, doi:10.1093/pcp/pcac067.
[19] Nguyen K L, Grondin A, Courtois B, et al. Next-generation sequencing accelerates crop gene discovery[J]. Trends in Plant Science, 2019, 24(3):263-274.
[20] Li Z Q, Xu Y H. Bulk segregation analysis in the NGS era:A review of its teenage years[J]. The Plant Journal:For Cell and Molecular Biology, 2022, 109(6):1355-1374.
[21] Gupta P K. Quantitative genetics:Pan-genomes, SVs, and k-mers for GWAS[J]. Trends in Genetics, 2021, 37(10):868-871.
[22] Thudi M, Palakurthi R, Schnable J C, et al. Genomic resources in plant breeding for sustainable agriculture[J]. Journal of Plant Physiology, 2021, 257:153351.
[23] Huang F F, Jiang Y R, Chen T T, et al. New data and new features of the FunRiceGenes (functionally characterized rice genes) database:2021 update[J]. Rice, 2022, 15(1):23.
[24] Jacquier N M A, Widiez T. Absent daddy, but important father[J]. Nature Plants, 2021, 7(12):1544-1545.
[25] Tian J G, Wang C L, Xia J L, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science, 2019, 365(6454):658-664.
[26] Chen W K, Chen L, Zhang X, et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J]. Science, 2022, 375(6587):eabg7985.
[27] Wang H W, Sun S L, Ge W Y, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J]. Science, 2020, 368(6493):eaba5435.
[28] Zhang X Y, Jia H Y, Li T, et al. TaCol-B5 modifies spike architecture and enhances grain yield in wheat[J]. Science, 2022, 376(6589):180-183.
[29] Kang L, Qian L W, Zheng M, et al. Genomic insights into the origin, domestication and diversification of Brassica juncea[J]. Nature Genetics, 2021, 53(9):1392-1402.
[30] Fudge J B. Flowering time:soybean adapts to the tropics[J]. Current Biology, 2022, 32(8):R360-R362.
[31] Underwood C J, Vijverberg K, Rigola D, et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce[J]. Nature Genetics, 2022, 54(1):84-93.
[32] liu Q, Wu K, Harberd N P, et al. Green Revolution DELLAs:From translational reinitiation to future sustainable agriculture[J]. Molecular Plant, 2021, 14(4):547-549.
[33] Liu Q, Wu K, Wu Y Z, et al. Beyond the Green Revolution:Improving crop productivity and sustainability by modulating plant growth-metabolic coordination[J]. Molecular Plant, 2022, 15(4):573-576.
[34] Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era[J]. Molecular Plant, 2021, 14(4):531-534.
[35] Huang L C, Sreenivasulu N, Liu Q Q. Waxy editing:Old meets new[J]. Trends in Plant Science, 2020, 25(10):963-966.
[36] 张钰坤,陆赢,崔看,等.芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J].作物学报, 2022, 48(6):1325-1332.
[37] Hunter D, Borelli T, Beltrame D M O, et al. The potential of neglected and underutilized species for improving diets and nutrition[J]. Planta, 2019, 250(3):709-729.
[38] Bohra A, Kilian B, Sivasankar S, et al. Reap the crop wild relatives for breeding future crops[J]. Trends in Biotechnology, 2022, 40(4):412-431.
[39] Dehaan L R, Van Tassel D L, Anderson J A, et al. A pipeline strategy for grain crop domestication[J]. Crop Science, 2016, 56(3):917-930.
[40] Dempewolf H, Baute G, Anderson J, et al. Past and future use of wild relatives in crop breeding[J]. Crop Science, 2017, 57(3):1070-1082.
[41] Xie X R, Liu Y G. De novo domestication towards new crops[J]. National Science Review, 2021, 8(4):nwab033.
[42] Gutaker R M, Chater C C C, Brinton J, et al. Scaling up neodomestication for climate-ready crops[J]. Current Opinion in Plant Biology, 2022, 66:102169.
[43] Xie Y, Zhang T H, Huang X Z, et al. A two-in-one breeding strategy boosts rapid utilization of wild species and elite cultivars[J]. Plant Biotechnology Journal, 2022, 20(5):800-802.
[44] Kingsbury N. Hybrid:The history and science of plant breeding[M]. Chicago:University of Chicago Press, 2009.
[45] Lawrence E J, Griffin C H, Henderson I R. Modification of meiotic recombination by natural variation in plants[J]. Journal of Experimental Botany, 2017, 68(20):5471-5483.
[46] Fayos I, Frouin J, Meynard D, et al. Manipulation of meiotic recombination to hasten crop improvement[J]. Biology, 2022, 11(3):369.
[47] Dirks R, Van Dun K, De Snoo C B, et al. Reverse breeding:a novel breeding approach based on engineered meiosis[J]. Plant Biotechnology Journal, 2009, 7(9):837-845.
[48] Underwood C J, Mercier R. Engineering apomixis:Clonal seeds approaching the fields[J]. Annual Review of Plant Biology, 2022, 73:201-225.
[49] Curry H A. Evolution made to order:Plant breeding and technological innovation in twentieth-century America[M]. Chicago:University of Chicago Press, 2016.
[50] Ahloowalia B S, Maluszynski M. Induced mutations:A new paradigm in plant breeding[J]. Euphytica, 2001, 118(2):167-173.
[51] Oladosu Y, Rafii M Y, AbdullaH N, et al. Principle and application of plant mutagenesis in crop improvement:A review[J]. Biotechnology&Biotechnological Equipment, 2016, 30(1):1-16.
[52] 刘瑞媛,金文杰,曲颖,等.重离子束辐射诱变技术在植物育种中的应用[J].广西科学, 2020, 27(1):20-26.
[53] Oono Y, Ichida H, Morita R, et al. Genome sequencing of ion-beam-induced mutants facilitates detection of candidate genes responsible for phenotypes of mutants in rice[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821:111691.
[54] Zheng Y C, Li S, Huang J Z, et al. Mutagenic effect of three ion beams on rice and identification of heritable mutations by whole genome sequencing[J]. Plants (Basel, Switzerland), 2020, 9(5):551.
[55] Dan C. Lord of the Harvest[M]. New York:Basic Books, 2008.
[56] Kumar K, Gambhir G, Dass A, et al. Genetically modified crops:current status and future prospects[J]. Planta, 2020, 251(4):91.
[57] Anjanappa R B, Gruissem W. Current progress and challenges in crop genetic transformation[J]. Journal of Plant Physiology, 2021, 261:153411.
[58] Zhu Q L, Wang B, Tan J T, et al. Plant synthetic metabolic engineering for enhancing crop nutritional quality[J]. Plant Communications, 2020, 1(1):100017.
[59] Verma D, Samson N P, Koya V, et al. A protocol for expression of foreign genes in chloroplasts[J]. Nature Protocols, 2008, 3(4):739-758.
[60] Daniell H, Jin S X, Zhu X G, et al. Green giant-a tiny chloroplast genome with mighty power to produce highvalue proteins:history and phylogeny[J]. Plant Biotechnology Journal, 2021, 19(3):430-447.
[61] Bock R. Transplastomic approaches for metabolic engineering[J]. Current Opinion in Plant Biology, 2022, 66:102185.
[62] Ji X, Yang B, Wang D W. Achieving plant genome editing while bypassing tissue culture[J]. Trends in Plant Science, 2020, 25(5):427-429.
[63] Simmons C R, Lafitte H R, Reimann K S, et al. Successes and insights of an industry biotech program to enhance maize agronomic traits[J]. Plant Science, 2021, 307:110899.
[64] Wang K J, Zhou H B, Qian Q. The rice codebook:from reading to editing[J]. Molecular Plant, 2022, 15(4):569-572.
[65] Gao C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6):1621-1635.
[66] Van Vu T, Das S, Hensel G, et al. Genome editing and beyond:what does it Mean for the future of plant breeding?[J]. Planta, 2022, 255(6):130.
[67] Pixley K V, Falck-Zepeda J B, Paarlberg R L, et al. Genome-edited crops for improved food security of smallholder farmers[J]. Nature Genetics, 2022, 54(4):364-367.
[68] Crisp P A, Bhatnagar-Mathur P, Hundleby P, et al. Beyond the gene:epigenetic and cis-regulatory targets offer new breeding potential for the future[J]. Current Opinion in Biotechnology, 2022, 73:88-94.
[69] Kim S G. CRISPR innovations in plant breeding[J]. Plant Cell Reports, 2021, 40(6):913-914.
[70] Puchta H, Jiang J M, Wang K, et al. Updates on gene editing and its applications[J]. Plant Physiology, 2022, 188(4):1725-1730.
[71] Kang B C, Bae S J, Lee S, et al. Chloroplast and mitochondrial DNA editing in plants[J]. Nature Plants, 2021, 7(7):899-905.
[72] Lee H, Hong C, Hwang J, et al. Go green with plant organelle genome editing[J]. Molecular Plant, 2021, 14(9):1415-1417.
[73] Forner J, Kleinschmidt D, Meyer E H, et al. Targeted introduction of heritable point mutations into the plant mitochondrial genome[J]. Nature Plants, 2022, 8(3):245-256.
[74] Omukai S, Arimura S I, Toriyama K, et al. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice[J]. Plant Physiology, 2021, 187(1):236-246.
[75] Cobb J N, Biswas P S, Platten J D. Back to the future:revisiting MAS as a tool for modern plant breeding[J]. Theoretical and Applied Genetics, 2019, 132(3):647-667.
[76] Hasan N, Choudhary S, Naaz N, et al. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes[J]. Journal of Genetic Engineering and Biotechnology, 2021, 19(1):128.
[77] Salgotra R K, Stewart C N Jr. Functional markers for precision plant breeding[J]. International Journal of Molecular Sciences, 2020, 21(13):4792.
[78] Lorenz A J, Chao S, Asoro F G, et al. Genomic selection in plant breeding[M]//Advances in Agronomy. Amsterdam:Elsevier, 2011:77-123.
[79] Crossa J, Pérez-Rodríguez P, Cuevas J, et al. Genomic selection in plant breeding:Methods, models, and perspectives[J]. Trends in Plant Science, 2017, 22(11):961-975.
[80] Xu Y B, Liu X G, Fu J J, et al. Enhancing genetic gain through genomic selection:From livestock to plants[J]. Plant Communications, 2020, 1(1):100005.
[81] Budhlakoti N, Kushwaha A K, Rai A, et al. Genomic selection:A tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops[J]. Frontiers in Genetics, 2022, 13:832153.
[82] Washburn J D, Cimen E, Ramstein G, et al. Predicting phenotypes from genetic, environment, management, and historical data using CNNs[J]. Theoretical and Applied Genetics, 2021, 134(12):3997-4011.
[83] Liu Y H, Zhang M P, Scheuring C F, et al. Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize[J]. Plant Science, 2022, 316:111153.
[84] Yan J, Xu Y T, Cheng Q, et al. LightGBM:Accelerated genomically designed crop breeding through ensemble learning[J]. Genome Biology, 2021, 22(1):271.
[85] Bevan M W, Uauy C, Wulff B B H, et al. Genomic innovation for crop improvement[J]. Nature, 2017, 543(7645):346-354.
[86] Chen Q Y, Tian F. Towards knowledge-driven breeding[J]. Nature Plants, 2021, 7(3):242-243.
[87] Wei X, Qiu J, Yong K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding[J]. Nature Genetics, 2021, 53(2):243-253.
[88] 房裕东,韩天富.作物快速育种技术研究进展[J].作物杂志, 2019(2):1-7.
[89] Hale B, Ferrie A M R, Chellamma S, et al. Androgenesis-based doubled haploidy:Past, present, and future perspectives[J]. Frontiers in Plant Science, 2022, 12:751230.
[90] Kalinowska K, Chamas S, Unkel K, et al. State-of-theart and novel developments of in vivo haploid technologies[J]. Theoretical and Applied Genetics, 2019, 132(3):593-605.
[91] Jacquier N M A, Gilles L M, Pyott D E, et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding[J]. Nature Plants, 2020, 6(6):610-619.
[92] Gao X P, Guo H H, Wu J F, et al. Haploid bio-induction in plant through mock sexual reproduction[J]. iScience, 2020, 23(7):101279.
[93] Weber D F. Today's use of haploids in corn plant breeding[M]//Advances in Agronomy. Amsterdam:Elsevier, 2014:123-144.
[94] Ruban A, Houben A. Highly reactive chemicals meet haploidization[J]. Molecular Plant, 2022, 15(6):937-939.
[95] Watson A, Ghosh S, Williams M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nature Plants, 2018, 4(1):23-29.
[96] Wanga M A, Shimelis H, Mashilo J, et al. Opportunities and challenges of speed breeding:A review[J]. Plant Breeding, 2021, 140(2):185-194.
[97] Pandey S, Singh A, Parida S K, et al. Combining speed breeding with traditional and genomics-assisted breeding for crop improvement[J]. Plant Breeding, 2022, 141(3):301-313.
[98] Murphy D. Plant breeding and biotechnology:Societal context and the future of agriculture[M]. Cambridge:Cambridge University Press, 2007.
[99] 郑怀国,赵静娟,秦晓婧,等.全球作物种业发展概况及对我国种业发展的战略思考[J].中国工程科学, 2021, 23(4):45-55.
[100] 邓超,唐浩.对我国农作物种业发展的几点思考[J].中国种业, 2022(6):1-5.
[101] 解沛,宋子涵,熊明民.中国种业发展现状与对策建议[J].农业科技管理, 2022, 41(1):9-12.
[102] Morales N, Ogbonna A C, Ellerbrock B J, et al. Breedbase:A digital ecosystem for modern plant breeding[J]. G3(Bethesda), 2022, doi:10.1093/g3journal/jkac078.
文章导航

/