[1] Goodman R M, Hauptli H, Crossway A, et al. Gene transfer in crop improvement[J]. Science, 1987, 236(4797):48-54.
[2] Hickey L T, Hafeez A N, Robinson H, et al. Breeding crops to feed 10 billion[J]. Nature Biotechnology, 2019, 37(7):744-754.
[3] Tian Z X, Wang J W, Li J Y, et al. Designing future crops:Challenges and strategies for sustainable agriculture[J]. The Plant Journal, 105(5):1165-1178.
[4] Cushman J C, Denby K, Mittler R. Plant responses and adaptations to a changing climate[J]. The Plant Journal:For Cell and Molecular Biology, 2022, 109(2):319-322.
[5] Zsogon A, Peres L E P, Xiao Y, et al. Enhancing crop diversity for food security in the face of climate uncertainty[J]. The Plant Journal:For Cell and Molecular Biology, 2022, 109(2):402-414.
[6] Kloppenburg J R Jr. First the seed:the political economy of plant biotechnology, 1492-2000[M]. 2nd ed. Madison:University of Wisconsin Press, 2004.
[7] Purugganan M D, Jackson S A. Advancing crop genomics from lab to field[J]. Nature Genetics, 2021, 53(5):595-601.
[8] Daszkowska-Golec A. The landscape of plant genomics after 20 years[J]. Trends in Genetics, 2022, 38(4):310-311.
[9] Song J M, Xie W Z, Wang S, et al. Two gap-free reference genomes and a global view of the centromere architecture in rice[J]. Molecular Plant, 2021, 14(10):1757-1767.
[10] Zhang F, Xue H Z, Dong X R, et al. Long-read sequencing of 111 rice genomes reveals significantly larger pangenomes[J]. Genome Research, 2022, 32(5):853-863.
[11] Sansaloni C, Franco J, Santos B, et al. Diversity analysis of 80000 wheat accessions reveals consequences and opportunities of selection footprints[J]. Nature Communications, 2020, 11:4572.
[12] Huang X H, Huang S W, Li J, et al. The integrated genomics of crop domestication and breeding[J]. Cell, 2022, doi:10.1016/j.cell.2022.04.036.
[13] Wing R A, Purugganan M D, Zhang Q. The rice genome revolution:From an ancient grain to Green Super Rice[J]. Nature Reviews Genetics, 2018, 19(8):505-517.
[14] Yang Z Q, Liang C Y, Wei L L, et al. BnVIR:Bridging the genotype-phenotype gap to accelerate mining of candidate variations underlying agronomic traits in Brassica napus[J]. Molecular Plant, 2022, 15(5):779-782.
[15] 王晓鸣,邱丽娟,景蕊莲,等.作物种质资源表型性状鉴定评价:现状与趋势[J].植物遗传资源学报, 2022, 23(1):12-20.
[16] Reynolds M, Chapman S, Crespo-Herrera L, et al. Breeder friendly phenotyping[J]. Plant Science, 2020, 295:110396.
[17] Scossa F, Alseekh S, Fernie A R. Integrating multiomics data for crop improvement[J]. Journal of Plant Physiology, 2021, 257:153352.
[18] Hirayama T, Mochida K. Plant hormonomics:A key tool for deep physiological phenotyping to improve crop productivity[J]. Plant and Cell Physiology, 2022, doi:10.1093/pcp/pcac067.
[19] Nguyen K L, Grondin A, Courtois B, et al. Next-generation sequencing accelerates crop gene discovery[J]. Trends in Plant Science, 2019, 24(3):263-274.
[20] Li Z Q, Xu Y H. Bulk segregation analysis in the NGS era:A review of its teenage years[J]. The Plant Journal:For Cell and Molecular Biology, 2022, 109(6):1355-1374.
[21] Gupta P K. Quantitative genetics:Pan-genomes, SVs, and k-mers for GWAS[J]. Trends in Genetics, 2021, 37(10):868-871.
[22] Thudi M, Palakurthi R, Schnable J C, et al. Genomic resources in plant breeding for sustainable agriculture[J]. Journal of Plant Physiology, 2021, 257:153351.
[23] Huang F F, Jiang Y R, Chen T T, et al. New data and new features of the FunRiceGenes (functionally characterized rice genes) database:2021 update[J]. Rice, 2022, 15(1):23.
[24] Jacquier N M A, Widiez T. Absent daddy, but important father[J]. Nature Plants, 2021, 7(12):1544-1545.
[25] Tian J G, Wang C L, Xia J L, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science, 2019, 365(6454):658-664.
[26] Chen W K, Chen L, Zhang X, et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J]. Science, 2022, 375(6587):eabg7985.
[27] Wang H W, Sun S L, Ge W Y, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J]. Science, 2020, 368(6493):eaba5435.
[28] Zhang X Y, Jia H Y, Li T, et al. TaCol-B5 modifies spike architecture and enhances grain yield in wheat[J]. Science, 2022, 376(6589):180-183.
[29] Kang L, Qian L W, Zheng M, et al. Genomic insights into the origin, domestication and diversification of Brassica juncea[J]. Nature Genetics, 2021, 53(9):1392-1402.
[30] Fudge J B. Flowering time:soybean adapts to the tropics[J]. Current Biology, 2022, 32(8):R360-R362.
[31] Underwood C J, Vijverberg K, Rigola D, et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce[J]. Nature Genetics, 2022, 54(1):84-93.
[32] liu Q, Wu K, Harberd N P, et al. Green Revolution DELLAs:From translational reinitiation to future sustainable agriculture[J]. Molecular Plant, 2021, 14(4):547-549.
[33] Liu Q, Wu K, Wu Y Z, et al. Beyond the Green Revolution:Improving crop productivity and sustainability by modulating plant growth-metabolic coordination[J]. Molecular Plant, 2022, 15(4):573-576.
[34] Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era[J]. Molecular Plant, 2021, 14(4):531-534.
[35] Huang L C, Sreenivasulu N, Liu Q Q. Waxy editing:Old meets new[J]. Trends in Plant Science, 2020, 25(10):963-966.
[36] 张钰坤,陆赢,崔看,等.芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J].作物学报, 2022, 48(6):1325-1332.
[37] Hunter D, Borelli T, Beltrame D M O, et al. The potential of neglected and underutilized species for improving diets and nutrition[J]. Planta, 2019, 250(3):709-729.
[38] Bohra A, Kilian B, Sivasankar S, et al. Reap the crop wild relatives for breeding future crops[J]. Trends in Biotechnology, 2022, 40(4):412-431.
[39] Dehaan L R, Van Tassel D L, Anderson J A, et al. A pipeline strategy for grain crop domestication[J]. Crop Science, 2016, 56(3):917-930.
[40] Dempewolf H, Baute G, Anderson J, et al. Past and future use of wild relatives in crop breeding[J]. Crop Science, 2017, 57(3):1070-1082.
[41] Xie X R, Liu Y G. De novo domestication towards new crops[J]. National Science Review, 2021, 8(4):nwab033.
[42] Gutaker R M, Chater C C C, Brinton J, et al. Scaling up neodomestication for climate-ready crops[J]. Current Opinion in Plant Biology, 2022, 66:102169.
[43] Xie Y, Zhang T H, Huang X Z, et al. A two-in-one breeding strategy boosts rapid utilization of wild species and elite cultivars[J]. Plant Biotechnology Journal, 2022, 20(5):800-802.
[44] Kingsbury N. Hybrid:The history and science of plant breeding[M]. Chicago:University of Chicago Press, 2009.
[45] Lawrence E J, Griffin C H, Henderson I R. Modification of meiotic recombination by natural variation in plants[J]. Journal of Experimental Botany, 2017, 68(20):5471-5483.
[46] Fayos I, Frouin J, Meynard D, et al. Manipulation of meiotic recombination to hasten crop improvement[J]. Biology, 2022, 11(3):369.
[47] Dirks R, Van Dun K, De Snoo C B, et al. Reverse breeding:a novel breeding approach based on engineered meiosis[J]. Plant Biotechnology Journal, 2009, 7(9):837-845.
[48] Underwood C J, Mercier R. Engineering apomixis:Clonal seeds approaching the fields[J]. Annual Review of Plant Biology, 2022, 73:201-225.
[49] Curry H A. Evolution made to order:Plant breeding and technological innovation in twentieth-century America[M]. Chicago:University of Chicago Press, 2016.
[50] Ahloowalia B S, Maluszynski M. Induced mutations:A new paradigm in plant breeding[J]. Euphytica, 2001, 118(2):167-173.
[51] Oladosu Y, Rafii M Y, AbdullaH N, et al. Principle and application of plant mutagenesis in crop improvement:A review[J]. Biotechnology&Biotechnological Equipment, 2016, 30(1):1-16.
[52] 刘瑞媛,金文杰,曲颖,等.重离子束辐射诱变技术在植物育种中的应用[J].广西科学, 2020, 27(1):20-26.
[53] Oono Y, Ichida H, Morita R, et al. Genome sequencing of ion-beam-induced mutants facilitates detection of candidate genes responsible for phenotypes of mutants in rice[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821:111691.
[54] Zheng Y C, Li S, Huang J Z, et al. Mutagenic effect of three ion beams on rice and identification of heritable mutations by whole genome sequencing[J]. Plants (Basel, Switzerland), 2020, 9(5):551.
[55] Dan C. Lord of the Harvest[M]. New York:Basic Books, 2008.
[56] Kumar K, Gambhir G, Dass A, et al. Genetically modified crops:current status and future prospects[J]. Planta, 2020, 251(4):91.
[57] Anjanappa R B, Gruissem W. Current progress and challenges in crop genetic transformation[J]. Journal of Plant Physiology, 2021, 261:153411.
[58] Zhu Q L, Wang B, Tan J T, et al. Plant synthetic metabolic engineering for enhancing crop nutritional quality[J]. Plant Communications, 2020, 1(1):100017.
[59] Verma D, Samson N P, Koya V, et al. A protocol for expression of foreign genes in chloroplasts[J]. Nature Protocols, 2008, 3(4):739-758.
[60] Daniell H, Jin S X, Zhu X G, et al. Green giant-a tiny chloroplast genome with mighty power to produce highvalue proteins:history and phylogeny[J]. Plant Biotechnology Journal, 2021, 19(3):430-447.
[61] Bock R. Transplastomic approaches for metabolic engineering[J]. Current Opinion in Plant Biology, 2022, 66:102185.
[62] Ji X, Yang B, Wang D W. Achieving plant genome editing while bypassing tissue culture[J]. Trends in Plant Science, 2020, 25(5):427-429.
[63] Simmons C R, Lafitte H R, Reimann K S, et al. Successes and insights of an industry biotech program to enhance maize agronomic traits[J]. Plant Science, 2021, 307:110899.
[64] Wang K J, Zhou H B, Qian Q. The rice codebook:from reading to editing[J]. Molecular Plant, 2022, 15(4):569-572.
[65] Gao C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6):1621-1635.
[66] Van Vu T, Das S, Hensel G, et al. Genome editing and beyond:what does it Mean for the future of plant breeding?[J]. Planta, 2022, 255(6):130.
[67] Pixley K V, Falck-Zepeda J B, Paarlberg R L, et al. Genome-edited crops for improved food security of smallholder farmers[J]. Nature Genetics, 2022, 54(4):364-367.
[68] Crisp P A, Bhatnagar-Mathur P, Hundleby P, et al. Beyond the gene:epigenetic and cis-regulatory targets offer new breeding potential for the future[J]. Current Opinion in Biotechnology, 2022, 73:88-94.
[69] Kim S G. CRISPR innovations in plant breeding[J]. Plant Cell Reports, 2021, 40(6):913-914.
[70] Puchta H, Jiang J M, Wang K, et al. Updates on gene editing and its applications[J]. Plant Physiology, 2022, 188(4):1725-1730.
[71] Kang B C, Bae S J, Lee S, et al. Chloroplast and mitochondrial DNA editing in plants[J]. Nature Plants, 2021, 7(7):899-905.
[72] Lee H, Hong C, Hwang J, et al. Go green with plant organelle genome editing[J]. Molecular Plant, 2021, 14(9):1415-1417.
[73] Forner J, Kleinschmidt D, Meyer E H, et al. Targeted introduction of heritable point mutations into the plant mitochondrial genome[J]. Nature Plants, 2022, 8(3):245-256.
[74] Omukai S, Arimura S I, Toriyama K, et al. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice[J]. Plant Physiology, 2021, 187(1):236-246.
[75] Cobb J N, Biswas P S, Platten J D. Back to the future:revisiting MAS as a tool for modern plant breeding[J]. Theoretical and Applied Genetics, 2019, 132(3):647-667.
[76] Hasan N, Choudhary S, Naaz N, et al. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes[J]. Journal of Genetic Engineering and Biotechnology, 2021, 19(1):128.
[77] Salgotra R K, Stewart C N Jr. Functional markers for precision plant breeding[J]. International Journal of Molecular Sciences, 2020, 21(13):4792.
[78] Lorenz A J, Chao S, Asoro F G, et al. Genomic selection in plant breeding[M]//Advances in Agronomy. Amsterdam:Elsevier, 2011:77-123.
[79] Crossa J, Pérez-Rodríguez P, Cuevas J, et al. Genomic selection in plant breeding:Methods, models, and perspectives[J]. Trends in Plant Science, 2017, 22(11):961-975.
[80] Xu Y B, Liu X G, Fu J J, et al. Enhancing genetic gain through genomic selection:From livestock to plants[J]. Plant Communications, 2020, 1(1):100005.
[81] Budhlakoti N, Kushwaha A K, Rai A, et al. Genomic selection:A tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops[J]. Frontiers in Genetics, 2022, 13:832153.
[82] Washburn J D, Cimen E, Ramstein G, et al. Predicting phenotypes from genetic, environment, management, and historical data using CNNs[J]. Theoretical and Applied Genetics, 2021, 134(12):3997-4011.
[83] Liu Y H, Zhang M P, Scheuring C F, et al. Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize[J]. Plant Science, 2022, 316:111153.
[84] Yan J, Xu Y T, Cheng Q, et al. LightGBM:Accelerated genomically designed crop breeding through ensemble learning[J]. Genome Biology, 2021, 22(1):271.
[85] Bevan M W, Uauy C, Wulff B B H, et al. Genomic innovation for crop improvement[J]. Nature, 2017, 543(7645):346-354.
[86] Chen Q Y, Tian F. Towards knowledge-driven breeding[J]. Nature Plants, 2021, 7(3):242-243.
[87] Wei X, Qiu J, Yong K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding[J]. Nature Genetics, 2021, 53(2):243-253.
[88] 房裕东,韩天富.作物快速育种技术研究进展[J].作物杂志, 2019(2):1-7.
[89] Hale B, Ferrie A M R, Chellamma S, et al. Androgenesis-based doubled haploidy:Past, present, and future perspectives[J]. Frontiers in Plant Science, 2022, 12:751230.
[90] Kalinowska K, Chamas S, Unkel K, et al. State-of-theart and novel developments of in vivo haploid technologies[J]. Theoretical and Applied Genetics, 2019, 132(3):593-605.
[91] Jacquier N M A, Gilles L M, Pyott D E, et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding[J]. Nature Plants, 2020, 6(6):610-619.
[92] Gao X P, Guo H H, Wu J F, et al. Haploid bio-induction in plant through mock sexual reproduction[J]. iScience, 2020, 23(7):101279.
[93] Weber D F. Today's use of haploids in corn plant breeding[M]//Advances in Agronomy. Amsterdam:Elsevier, 2014:123-144.
[94] Ruban A, Houben A. Highly reactive chemicals meet haploidization[J]. Molecular Plant, 2022, 15(6):937-939.
[95] Watson A, Ghosh S, Williams M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nature Plants, 2018, 4(1):23-29.
[96] Wanga M A, Shimelis H, Mashilo J, et al. Opportunities and challenges of speed breeding:A review[J]. Plant Breeding, 2021, 140(2):185-194.
[97] Pandey S, Singh A, Parida S K, et al. Combining speed breeding with traditional and genomics-assisted breeding for crop improvement[J]. Plant Breeding, 2022, 141(3):301-313.
[98] Murphy D. Plant breeding and biotechnology:Societal context and the future of agriculture[M]. Cambridge:Cambridge University Press, 2007.
[99] 郑怀国,赵静娟,秦晓婧,等.全球作物种业发展概况及对我国种业发展的战略思考[J].中国工程科学, 2021, 23(4):45-55.
[100] 邓超,唐浩.对我国农作物种业发展的几点思考[J].中国种业, 2022(6):1-5.
[101] 解沛,宋子涵,熊明民.中国种业发展现状与对策建议[J].农业科技管理, 2022, 41(1):9-12.
[102] Morales N, Ogbonna A C, Ellerbrock B J, et al. Breedbase:A digital ecosystem for modern plant breeding[J]. G3(Bethesda), 2022, doi:10.1093/g3journal/jkac078.