[1] Zhong R, Xu X, Klotz E, et al. Intelligent manufacturing in the context of industry 4.0:A review[J]. Engineering, 2017, 3(5):616-630.
[2] Tao F, Qi Q, Wang L, et al. Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0:Correlation and comparison[J]. Engineering, 2019, 5(4):653-661.
[3] Yan D X, Sha W N, Wang D W, et al. Digital twin-driven variant design of a 3C electronic product assembly line[J]. Scientific Reports, 2022, 12:3846.
[4] Tao F, Sui F Y, Liu A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12):3935-3953.
[5] Zheng P, Hong Lim K Y. Product family design and optimization:A digital twin-enhanced approach[J]. Procedia CIRP, 2020, 93:246-250.
[6] Zhang M, Sui F Y, Liu A, et al. Digital twin driven smart product design framework[M]//Digital Twin Driven Smart Design. Amsterdam:Elsevier, 2020:3-32.
[7] Ma J, Chen H, M Zhang Y, et al. A digital twin-driven production management system for production workshop[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5):1385-1397.
[8] Guo J P, Zhao N, Sun L, et al. Modular based flexible digital twin for factory design[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1189-1200.
[9] Fang Y, L Peng C, Lou P, et al. Digital-twin-based job shop scheduling toward smart manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(12):6425-6435.
[10] Zhou G H, Zhang C, Li Z, et al. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing[J]. International Journal of Production Research, 2020, 58(4):1034-1051.
[11] Kong T X, Hu T L, Zhou T T, et al. Data construction method for the applications of workshop digital twin system[J]. Journal of Manufacturing Systems, 2021, 58:323-328.
[12] 李仁旺,肖人彬.数字孪生驱动的大数据制造服务模式[J].科技导报, 2020, 38(14):116-125.
[13] Zhang F Q, Bai J Y, Yang D Y, et al. Digital twin datadriven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision[J]. Scientific Reports, 2022, 12:1546.
[14] Guo D Q, Zhong R Y, Rong Y M, et al. Synchronization of shop-floor logistics and manufacturing under IIoT and digital twin-enabled graduation intelligent manufacturing system[J]. IEEE Transactions on Cybernetics, 2021(99):34516385.
[15] Zhou X K, Xu X S, Liang W, et al. Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2):1377-1386.
[16] Lu Q C, Xie X, Parlikad A K, et al. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance[J]. Automation in Construction, 2020, 118:103277.
[17] Dai Y Y, Zhang K, Maharjan S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7):4968-4977.
[18] Leng J W, Yan D X, Liu Q, et al. ManuChain:combining permissioned blockchain with a holistic optimization model as bi-level intelligence for smart manufacturing[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(1):182-192.
[19] Guo J Y, Yang Z J, Chen C H, et al. Real-time prediction of remaining useful life and preventive maintenance strategy based on digital twin[J]. Journal of Computing and Information Science in Engineering, 2021, 21(3):1-14.
[20] Luo W C, Hu T L, Ye Y X, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101974.
[21] 刘献礼,李雪冰,丁明娜,等.面向智能制造的刀具全生命周期智能管控技术[J].机械工程学报, 2021, 57(10):196-219.
[22] Xia K S, Sacco C, Kirkpatrick M, et al. A digital twin to train deep reinforcement learning agent for smart manufacturing plants:Environment, interfaces and intelligence[J]. Journal of Manufacturing Systems, 2021, 58:210-230.
[23] Saad A, Faddel S, Youssef T, et al. On the implementation of IoT-based digital twin for networked microgrids resiliency against cyber attacks[J]. IEEE Transactions on Smart Grid, 2020, 11(6):5138-5150.
[24] 刘义,刘晓冬,焦曼,等.基于数字孪生的智能车间管控[J].制造业自动化, 2020, 42(7):148-152.
[25] Schroeder G N, Steinmetz C, Rodrigues R N, et al. A methodology for digital twin modeling and deployment for industry 4.0[J]. Proceedings of the IEEE, 2021, 109(4):556-567.
[26] Zhang H, Qi Q L, Tao F. A multi-scale modeling method for digital twin shop-floor[J]. Journal of Manufacturing Systems, 2022, 62:417-428.
[27] Minerva R, Lee G M, Crespi N. Digital twin in the IoT context:a survey on technical features, scenarios, and architectural models[J]. Proceedings of the IEEE, 2020, 108(10):1785-1824.
[28] Tong X, Liu Q, Pi S W, et al. Real-time machining data application and service based on IMT digital twin[J]. Journal of Intelligent Manufacturing, 2020, 31(5):1113-1132.
[29] Corallo A, Del Vecchio V D, Lezzi M, et al. Shop floor digital twin in smart manufacturing:A systematic literature review[J]. Sustainability, 2021, 13(23):12987.
[30] Kreutz D, Ramos F M V, Veríssimo P E, et al. Softwaredefined networking:A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1):14-76.
[31] Heidari P, Lemieux Y, Shami A. QoS assurance with light virtualization-A survey[C]//2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). Piscataway:IEEE Press, 2016:558-563.
[32] Bakshi K. Microservices-based software architecture and approaches[C]//2017 IEEE Aerospace Conference. Piscataway:IEEE Press, 2017:1-8.
[33] 李洪阳,魏慕恒,黄洁,等.信息物理系统技术综述[J].自动化学报, 2019, 45(1):37-50.
[34] Yun S, Park J H, Kim W T. Data-centric middleware based digital twin platform for dependable cyber-physical systems[C]//2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). Piscataway:IEEE Press, 2017:922-926.