Nuclear technology is widely used in industry, agriculture, medicine, public security, environmental protection and other fields, and plays an important role in the development of national economy This article focuses on the nuclear technology application filed concerning ray producing devices, radioisotope technologies and nuclear detection technology, and overviews the overseas and domestic status and development trend in terms of electron accelerators, proton/heavy ion accelerators, neutron generators, radioisotope production devices, radiopharmaceuticals, radioactive source and nuclear detection technologies. Meanwhile, the development of ray device and radioisotope technology is prospected.
[1] Office of high energy physics accelerator R&D task force report[R/OL].[2022-05-20]. https://www.docin.com/p-746975751.html.
[2] 国内核技术应用产业发展现状分析[EB/OL].[2022-05-20]. http://www.smnpo.cn/shhxw/1659799.htm.
[3] 薛岳,徐广铎.中国核技术应用产业发展现状[J].同位素, 2021, 34(2):97-103.
[4] 中国核学会. 2018-2020核技术应用学科发展报告[M].北京:中国科学技术出版社, 2021.
[5] 中国核学会. 2019-2021核技术应用学科发展报告[M].北京:中国科学技术出版社, 2022.
[6] 赵明华.中国电子加速器辐照装备发展现状与技术评估[C]//2009年全国辐射交联线缆及加速器装置发展研讨会论文集.北京:中国同位素与辐射行业协会,中国电器工业协会, 2009.
[7] 杨绍洲,陈龙华,张树军.医用电子直线加速器[M].北京:人民军医出版社, 2004.
[8] Glass H I, Silvester D J. Cyclotrons in nuclear medicine[J]. The British Journal of Radiology, 2014, 43(513), doi:10.1259/0007-1285-43-513-589.
[9] Global Medical Cyclotron Market Professional Survey Report 2016[R/OL].[2022-05-20]. https://www.wiseguyreports.com/reports/627099-global-medical-cyclotron-market-professional-survey-report-2016.
[10] 李紫微,韩运成,王晓彧,等.医用放射性同位素99Mo/99mTc生产现状和展望[J].原子核物理评论, 2019, 36(2):170-183.
[11] OECD, Agency N E. The supply of medical isotopes:An economic diagnosis and possible solutions[M]. Paris:OECD, 2019.
[12] Vandegrift G F, Conner C, Hofman G L, et al. Modification of targets and processes for conversion of 99Mo production from high-to low-enriched uranium[J]. Industrial&Engineering Chemistry Research, 2000, 39(9):3140-3145.
[13] Dvorakova Z, Henkelmann R, Lin X, et al. Production of 177Lu at the new research reactor FRM-II:Irradiation yield of 176Lu (n, γ)[J]. Applied Radiation and Isotopes, 2008, 66(2):147-151.
[14] Mikolajczak R, Parus J L, Pawlak D, et al. Reactor produced 177Lu of specific activity and purity suitable for medical applications[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 257(1):53-57.
[15] Obata A, Kasamatsu S, Mccarthy D W, et al. Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron[J]. Nuclear Medicine and Biology, 2003, 30(5):535-539.
[16] Sadeghi M, Enferadi M, Bakhtiari M. Accelerator production of the positron emitter zirconium-89[J]. Annals of Nuclear Energy, 2012, 41:97-103.
[17] Griswold J R, Medvedev D G, Engle J W, et al. Large scale accelerator production of 225Ac:Effective cross sections for 78-192 MeV protons incident on 232Th targets[J]. Applied Radiation and Isotopes, 2016, 118:366-374.
[18] Das T, Chakraborty S, Banerjee S, et al. On the preparation of a therapeutic dose of 177Lu-labeled DOTA-TATE using indigenously produced 177Lu in medium flux reactor[J]. Applied Radiation and Isotopes, 2007, 65(3):301-308.
[19] Balter H, Victoria T, Mariella T, et al. 177Lu-labeled agents for neuroendocrine tumor therapy and bone pain palliation in Uruguay[J]. Current Radiopharmaceuticals, 2016, 9(1):85-93.
[20] Zhang C, Fang S X. Particle accelerators in China[M]//Reviews of Accelerator Science and Technology. London:World Scientific Publishing, 2017:265-312.
[21] 夏佳文.粒子加速器分会第十一届理事会工作报告[R].北京:中国物理学会,中国核学会, 2020.
[22] 2021年中国电子加速器研究报告:医疗、辐照、环保核技术细分赛道前景分析[EB/OL].[2022-05-20]. https://pdf.dfcfw.com/pdf/H3_AP202204291562300829_1.pdf?1651227439000.pdf.
[23] 甘肃省威武肿瘤医院重离子中心[EB/OL].[2022-05-31]. http://jy.wwzlyy.com.cn/htm/list/75_1.htm.
[24] 张天爵,樊明武,安世忠,等. CIAE回旋加速器及应用综述[J].原子能科学技术, 2020, 54(增刊1):275-292.
[25] Huang Z W, Wang J R, Wei Z, et al. Development of a compact D-D neutron generator[J]. Journal of Instrumentation, 2018, 13(1):P01013.
[26] 梁积新,沈亦佳,吴宇轩,等.电沉积LEU UO2靶件生产医用99Mo的工艺研究[J].同位素, 2018, 31(3):165-172.
[27] 梁积新,吴宇轩,罗志福. CIAE放射性同位素制备技术的发展[J].原子能科学技术, 2020, 54(增刊1):177-184.
[28] 陈玉清,梁积新,李光,等.阴离子交换法从辐照后的Ni靶中分离64Cu[J].同位素, 2012, 25(3):144-148.
[29] 樊彩云,韩世泉,罗志福. CIAE放射性药物和标记化合物的发展[J].原子能科学技术, 2020, 54(增刊1):185-193.
[30] 侯景景,王军,张秋,等.重水堆医用钴调节棒变更物理分析[J].中国核电, 2019, 12(4):357-364.
[31] 罗洪义,牛厂磊,吴胜娜,等.深空探测中的钚-238同位素电源[J].深空探测学报, 2020, 7(1):61-72.