专稿

人源类器官研究历程及发展趋势

  • 何康信 ,
  • 张景语 ,
  • 钱菁菁 ,
  • 李兰娟
展开
  • 1. 浙江大学医学院附属第一医院传染病诊治国家重点实验室, 国家感染性疾病临床医学研究中心, 国家传染病医学中心, 感染性疾病诊治协同创新中心, 杭州 310003;
    2. 济南微生态生物医学山东省实验室, 济南 250117
何康信,博士研究生,研究方向为类器官的转化医学,电子信箱:hekangxin@zju.edu.cn

收稿日期: 2022-05-31

  修回日期: 2022-06-15

  网络出版日期: 2022-08-05

基金资助

浙江省自然科学基金项目(LQZOH100002);济南微生态生物医学省实验室科研项目

History and prospect of organoids research

  • HE Kangxin ,
  • ZHANG Jingyu ,
  • QIAN Jingjing ,
  • LI Lanjuan
Expand
  • 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
    2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China

Received date: 2022-05-31

  Revised date: 2022-06-15

  Online published: 2022-08-05

摘要

类器官是干细胞在体外培养出的一种3D细胞培养物(类器官模型),拥有与来源器官(组织)高度相似的组织学特征和生理功能。概述了类器官技术的发展历程、类器官的不同种类、来源及表型。以肿瘤药物开发的临床前模型为例,对比了肿瘤细胞系、条件重编程、类器官模型及荷瘤模型(PDX)这4种模型,得出类器官模型是较为优秀的一种体外模型,可用于感染性疾病和慢性非感染性疾病的模型研究。总结了类器官技术未来发展的4方面影响因素:需求和挑战的驱动、技术和知识的驱动、资源和要素的驱动、伦理和法规的约束。

本文引用格式

何康信 , 张景语 , 钱菁菁 , 李兰娟 . 人源类器官研究历程及发展趋势[J]. 科技导报, 2022 , 40(12) : 13 -27 . DOI: 10.3981/j.issn.1000-7857.2022.12.002

Abstract

The traditional monolayer cell cultures (cell lines) have been widely used, however, such models fail to recapitulate the cellular heterogeneity, the structure, and the functions of the primary tissues. The organoids, which are tiny, self-organized three-dimensional tissue cultures derived from the stem cells, possess the histological features and the physiological functions highly similar to those of the deriving organs. The patient-derived organoid models have excellent characteristics, such as the humanization, the personalization, the good simulation ability, and the self-organization. Recent research advances show that the organoid models have served as a promising tool in three scenarios, namely, the personalized drug response prediction, the new drug development, and the organoid biobank. The organoid technologies refer to a series of organoid model-related technologies that have a wide range of application prospects in various aspects, for instance, the developmental biology, the regenerative medicine, the disease research, the drug development, and the precision medicine, with high social and economic benefits at the same time. Therapeutic products developed based on the organoid techniques can help achieve precision medicine. Currently, the trends of the organoid technology are influenced by a combination of four factors, specifically, the demand and challenge drivers, the technology and knowledge drivers, the resource and factor drivers, and the ethical and regulatory constraints. This paper discusses the research history and the development trends, focusing on the advantages, the limitations, and the potential applications of organoid models and technologies.

参考文献

[1] Lancaster M A, Knoblich J A. Organogenesis in a dish:Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125.
[2] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Selforganized formation of polarized cortical tissues from escs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5):519-532.
[3] Sato T, Vries R G, Snippert H J, et al. Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
[4] Method of the year 2017:Organoids[J]. Nature Methods, 2018, 15(1):1-1.
[5] Li M, Izpisua Belmonte J C. Organoids-preclinical models of human disease[J]. New England Journal of Medicine, 2019, 380(6):569-579.
[6] Trisno S L, Philo K E D, McCracken K W, et al. Esophageal organoids from human pluripotent stem cells delineate sox2 functions during esophageal specification[J]. Cell Stem Cell, 2018, 23(4):501-515.e507.
[7] Mccracken K W, Catá E M, Crawford C M, et al. Modelling human development and disease in pluripotent stemcell-derived gastric organoids[J]. Nature, 2014, 516(7531):400-404.
[8] Tsai Y H, Czerwinski M, Wu A, et al. A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6(2):218-222.e217.
[9] Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition[J]. Cell Stem Cell, 2018, 23(6):787-793.e786.
[10] Turco M Y, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J]. Nature Cell Biology, 2017, 19(5):568-577.
[11] Diao J M, Liu J, Wang S Y, et al. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration[J]. Cell Death & Disease, 2019, 10(3):238.
[12] Tanaka J, Ogawa M, Hojo H, et al. Generation of orthotopically functional salivary gland from embryonic stem cells[J]. Nature Communications, 2018, 9(1):4216.
[13] Hayashi R, Okubo T, Kudo Y, et al. Generation of 3D lacrimal gland organoids from human pluripotent stem cells[J]. Nature, 2022, 605(7908):126-131.
[14] Huch M, Dorrell C, Boj S F, et al. In vitro expansion of single lgr5+ liver stem cells induced by wnt-driven regeneration[J]. Nature, 2013, 494(7436):247-250.
[15] Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1-2):299-312.
[16] Hu H L, Gehart H, Artegiani B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175(6):1591-1606.e1519.
[17] Greggio C, De Franceschi F, Figueiredo-Larsen M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140(21):4452-4462.
[18] Wang D, Wang J, Bai L, et al. Long-term expansion of pancreatic islet organoids from resident procr+progenitors[J]. Cell, 2020, 180(6):1198-1211. e1119.
[19] Danjo T, Eiraku M, Muguruma K, et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals[J]. Journal of Neuroscience, 2011, 31(5):1919-1933.
[20] Lancaster M A, Renner M, Martin C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.
[21] Jo J, Xiao Y, Sun A X, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.
[22] Sakaguchi H, Kadoshima T, Soen M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue[J]. Nature Communication, 2015, 6:8896.
[23] Muguruma K, Nishiyama A, Kawakami H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells[J]. Cell Reports, 2015, 10(4):537-550.
[24] Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human escs[J]. Cell Stem Cell, 2012, 10(6):771-785.
[25] Saha A, Capowski E, Fernandez Zepeda M A, et al. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea[J]. Cell Stem Cell, 2022, 29(3):460-471.e463.
[26] Takasato M, Er P X, Chiu H S, et al. Kidney organoids from human ips cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526(7574):564-568.
[27] Schutgens F, Rookmaaker M B, Margaritis T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nature Biotechnology, 2019, 37(3):303-313.
[28] Jamieson P R, Dekkers J F, Rios A C, et al. Derivation of a robust mouse mammary organoid system for studying tissue dynamics[J]. Development, 2017, 144(6):1065-1071.
[29] Karthaus W R, Iaquinta P J, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1):163-175.
[30] Van Der Vaart J, Bosmans L, Sijbesma S F, et al. Adult mouse and human organoids derived from thyroid follicular cells and modeling of graves' hyperthyroidism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(51):e2117017118.
[31] Lewis-Israeli Y R, Wasserman A H, Gabalski M A, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease[J]. Nature Communications, 2021, 12(1):5142.
[32] Shkumatov A, Baek K, Kong H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies[J]. PLoS One, 2014, 9(4):e94764.
[33] Salahudeen A A, Choi S S, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids[J]. Nature, 2020, 588(7839):670-675.
[34] Katsura H, Sontake V, Tata A, et al. Human lung stem cell-based alveolospheres provide insights into SARSCoV-2-mediated interferon responses and pneumocyte dysfunction[J]. Cell Stem Cell, 2020, 27(6):890-904. e898.
[35] Kessler M, Hoffmann K, Brinkmann V, et al. The notch and wnt pathways regulate stemness and differentiation in human fallopian tube organoids[J]. Nature Communication, 2015, 6:8989.
[36] Suga H, Kadoshima T, Minaguchi M, et al. Self-formation of functional adenohypophysis in three-dimensional culture[J]. Nature, 2011, 480(7375):57-62.
[37] Koehler K R, Mikosz A M, Molosh A I, et al. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture[J]. Nature, 2013, 500(7461):217-221.
[38] Wagar L E, Salahudeen A, Constantz C M, et al. Modeling human adaptive immune responses with tonsil organoids[J]. Nature Medicine, 2021, 27(1):125-135.
[39] Seet C S, He C, Bethune M T, et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids[J]. Nature Methods, 2017, 14(5):521-530.
[40] Hisha H, Tanaka T, Kanno S, et al. Establishment of a novel lingual organoid culture system:Generation of organoids having mature keratinized epithelium from adult epithelial stem cells[J]. Scientific Reports, 2013, 3(1):3224.
[41] Aihara E, Mahe M M, Schumacher M A, et al. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid[J]. Scientific Reports, 2015, 5(1):17185.
[42] Sakib S, Uchida A, Valenzuela-Leon P, et al. Formation of organotypic testicular organoids in microwell culture[J]. Biology of Reproduction, 2019, 100(6):1648-1660.
[43] Sheridan M A, Fernando R C, Gardner L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta[J]. Nature Protocols, 2020, 15(10):3441-3463.
[44] Poletti M, Arnauts K, Ferrante M, et al. Organoid-based models to study the role of host-microbiota interactions in IBD[J]. Journal of Crohn's and Colitis, 2020, 15(7):1222-1235.
[45] Strikoudis A, Cieślak A, Loffredo L, et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells[J]. Cell Reports, 2019, 27(12):3709-3723.e3705.
[46] Ouchi R E, Togo S, Kimura M, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids[J]. Cell Metabolism, 2019, 30(2):374-384. e376.
[47] Sato T, Stange D E, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772.
[48] Dekkers J F, Wiegerinck C L, de Jonge H R, et al. A functional cftr assay using primary cystic fibrosis intestinal organoids[J]. Nature Medicine, 2013, 19(7):939-945.
[49] Amarachintha S P, Mourya R, Ayabe H, et al. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia[J]. Hepatology, 2022, 75(1):89-103.
[50] Yuki K, Cheng N, Nakano M, et al. Organoid models of tumor immunology[J]. Trends in Immunology, 2020, 41(8):652-664.
[51] Wang W, Yuan T, Ma L, et al. Hepatobiliary tumor organoids reveal hla class i neoantigen landscape and antitumoral activity of neoantigen peptide enhanced with immune checkpoint inhibitors[J]. Advanced Science, 2022, e2105810.
[52] Drost J, Clevers H. Organoids in cancer research[J]. Nature Reviews Cancer, 2018, 18(7):407-418.
[53] Ganesh K, Wu C, O'Rourke K P, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nature Medicine, 2019, 25(10):1607-1614.
[54] Kopper O, de Witte C J, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity[J]. Nature Medicine, 2019, 25(5):838-849.
[55] Broutier L, Mastrogiovanni G, Verstegen M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nature Medicine, 2017, 23(12):1424-1435.
[56] Yao Y, Xu X Y, Yang L F, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e6.
[57] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patientderived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926.
[58] Kijima T, Nakagawa H, Shimonosono M, et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells[J]. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7(1):73-91.
[59] Yan H H N, Siu H C, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e811.
[60] Nuciforo S, Fofana I, Matter M S, et al. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Reports, 2018, 24(5):1363-1376.
[61] Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1):176-187.
[62] Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1-2):373-386.e310.
[63] Lee S H, Hu W H, Matulay J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2):515-528.e517.
[64] Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52):26580-26590.
[65] Tiriac H, Belleau P, Engle D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discovery, 2018, 8(9):1112-1129.
[66] Williamson I A, Arnold J W, Samsa L A, et al. A highthroughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6(3):301-319.
[67] Co J Y, Margalef-Català M, Li X, et al. Controlling epithelial polarity:A human enteroid model for host-pathogen interactions[J]. Cell Reports, 2019, 26(9):2509-2520.e2504.
[68] Foulke-Abel J, In J, Kovbasnjuk O, et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract[J]. Experimental Biology and Medicine (Maywood, N J), 2014, 239(9):1124-1134.
[69] Han Y L, Yang L L, Lacko L A, et al. Human organoid models to study SARS-CoV-2 infection[J]. Nature Methods, 2022, 19(4):418-428.
[70] Sugimoto S, Kobayashi E, Fujii M, et al. An organoidbased organ-repurposing approach to treat short bowel syndrome[J]. Nature, 2021, 592(7852):99-104.
[71] Watanabe S, Kobayashi S, Ogasawara N, et al. Transplantation of intestinal organoids into a mouse model of colitis[J]. Nature Protocols, 2022, 17(3):649-671.
[72] Sampaziotis F, Justin A W, Tysoe O C, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nature Medicine, 2017, 23(8):954-963.
[73] Caplan A, Parent B. Ethics and the emerging use of pig organs for xenotransplantation[J]. The Journal of Heart and Lung Transplantation, 2022, doi:10.1016/j. healun. 2022.06.008.
[74] Ren Y, Yang X, Ma Z J, et al. Developments and opportunities for 3d bioprinted organoids[J]. International Journal of Bioprinting, 2021, 7(3):18-36.
[75] Zheng F Y, Xiao Y, Liu H, et al. Organ-on-a-chip:Patient-specific organoid and organ-on-a-chip:3D cellculture meets 3D printing and numerical simulation[J]. Advanced Biology, 2021, 5(6):e2000024.
[76] Rawal P, Tripathi D M, Ramakrishna S, et al. Prospects for 3D bioprinting of organoids[J]. Bio-Design and Manufacturing, 2021, 4(3):627-640.
[77] Brassard J A, Nikolaev M, Hübscher T, et al. Recapitulating macro-scale tissue self-organization through organoid bioprinting[J]. Nature Materials, 2021, 20(1):22-29.
[78] Carberry B J, Hergert J E, Yavitt F M, et al. 3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices[J]. Biofabrication, 2021, doi:10.1088/1758-10.1088/5090/ac1c98.
[79] Kim E, Choi S, Kang B, et al. Creation of bladder assembloids mimicking tissue regeneration and cancer[J]. Nature, 2020, 588(7839):664-669.
[80] Lawlor K T, Vanslambrouck J M, Higgins J W, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nature Materials, 2021, 20(2):260-271.
[81] Jiang S W, Zhao H R, Zhang W J, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity[J]. Cell Reports Medicine, 2020, 1(9):100161.
[82] Tang M, Xie Q, Gimple R C, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions[J]. Cell Research, 2020, 30(10):833-853.
[83] Grigoryan B, Paulsen S J, Corbett D C, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464.
[84] Kaur S, Tripathi D M, Ghosh S. Three-dimensional bioprinted hepatorganoids in liver failure[J]. Gut, 2021, 70(5):998-999.
[85] Groll J, Boland T, Blunk T, et al. Biofabrication:Reappraising the definition of an evolving field[J]. Biofabrication, 2016, 8(1):013001.
[86] Liu H T, Wang Y Q, Wang H, et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering[J]. Advanced Science, 2020, 7(11):1903739.
[87] Neal J T, Li X N, Zhu J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988.e1916.
[88] Ootani A, Li X, Sangiorgi E, et al. Sustained in vitro intestinal epithelial culture within a wnt-dependent stem cell niche[J]. Nature Medicine, 2009, 15(6):701-706.
[89] Yin S Y, Xi R B, Wu A W, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy[J]. Science Translational Medicine, 2020, 12(549):eaaz1723
[90] Wörsdörfer P, Dalda N, Kern A, et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells[J]. Scientific Reports, 2019, 9:15663.
[91] Wimmer R A, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
[92] Palikuqi B, Nguyen D-H T, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis[J]. Nature, 2020, 585(7825):426-432.
[93] Hofer M, Lutolf M P. Engineering organoids[J]. Nature Reviews Materials, 2021, 6(5):402-420.
[94] LeSavage B L, Suhar R A, Broguiere N, et al. Next-generation cancer organoids[J]. Nature Materials, 2022, 21(2):143-159.
[95] Bayir E, Sendemir A, Missirlis Y F. Mechanobiology of cells and cell systems, such as organoids[J]. Biophysical Reviews, 2019, 11(5):721-728.
[96] Umkehrer C, Holstein F, Formenti L, et al. Isolating live cell clones from barcoded populations using crispra-inducible reporters[J]. Nature Biotechnology, 2021, 39(2):174-178.
[97] Kassis T, Hernandez-Gordillo V, Langer R, et al. Orgaquant:Human intestinal organoid localization and quantification using deep convolutional neural networks[J]. Scientific Reports, 2019, 9:12479.
[98] Esmail S, Danter W R. Artificially induced pluripotent stem cell-derived whole-brain organoid for modelling the pathophysiology of metachromatic leukodystrophy and drug repurposing[J]. Biomedicines, 2021, 9(4):440.
[99] Esmail S, Danter W R. Lung organoid simulations for modelling and predicting the effect of mutations on SARS-CoV-2 infectivity[J]. Computational and Structural Biotechnology Journal, 2021, 19:1701-1712.
[100] Haase K, offeddu G S, Gillrie M R, et al. Endothelial regulation of drug transport in a 3D vascularized tumor model[J]. Advanced Functional Materials, 2020, 30(48):2002444.
[101] Chen M B, Whisler J A, Fröse J, et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics[J]. Nature Protocols, 2017, 12(5):865-880.
[102] Broguiere N, Lüchtefeld I, Trachsel L, et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices[J]. Advanced Materials, 2020, 32(25):e1908299.
[103] 罗会宇,马永康.人源类器官的应用前景、伦理风险与治理建议[J].科技导报, 2022, 40(8):6-13.
文章导航

/