[1] Lancaster M A, Knoblich J A. Organogenesis in a dish:Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125.
[2] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Selforganized formation of polarized cortical tissues from escs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5):519-532.
[3] Sato T, Vries R G, Snippert H J, et al. Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
[4] Method of the year 2017:Organoids[J]. Nature Methods, 2018, 15(1):1-1.
[5] Li M, Izpisua Belmonte J C. Organoids-preclinical models of human disease[J]. New England Journal of Medicine, 2019, 380(6):569-579.
[6] Trisno S L, Philo K E D, McCracken K W, et al. Esophageal organoids from human pluripotent stem cells delineate sox2 functions during esophageal specification[J]. Cell Stem Cell, 2018, 23(4):501-515.e507.
[7] Mccracken K W, Catá E M, Crawford C M, et al. Modelling human development and disease in pluripotent stemcell-derived gastric organoids[J]. Nature, 2014, 516(7531):400-404.
[8] Tsai Y H, Czerwinski M, Wu A, et al. A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6(2):218-222.e217.
[9] Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition[J]. Cell Stem Cell, 2018, 23(6):787-793.e786.
[10] Turco M Y, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J]. Nature Cell Biology, 2017, 19(5):568-577.
[11] Diao J M, Liu J, Wang S Y, et al. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration[J]. Cell Death & Disease, 2019, 10(3):238.
[12] Tanaka J, Ogawa M, Hojo H, et al. Generation of orthotopically functional salivary gland from embryonic stem cells[J]. Nature Communications, 2018, 9(1):4216.
[13] Hayashi R, Okubo T, Kudo Y, et al. Generation of 3D lacrimal gland organoids from human pluripotent stem cells[J]. Nature, 2022, 605(7908):126-131.
[14] Huch M, Dorrell C, Boj S F, et al. In vitro expansion of single lgr5+ liver stem cells induced by wnt-driven regeneration[J]. Nature, 2013, 494(7436):247-250.
[15] Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1-2):299-312.
[16] Hu H L, Gehart H, Artegiani B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175(6):1591-1606.e1519.
[17] Greggio C, De Franceschi F, Figueiredo-Larsen M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140(21):4452-4462.
[18] Wang D, Wang J, Bai L, et al. Long-term expansion of pancreatic islet organoids from resident procr+progenitors[J]. Cell, 2020, 180(6):1198-1211. e1119.
[19] Danjo T, Eiraku M, Muguruma K, et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals[J]. Journal of Neuroscience, 2011, 31(5):1919-1933.
[20] Lancaster M A, Renner M, Martin C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.
[21] Jo J, Xiao Y, Sun A X, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.
[22] Sakaguchi H, Kadoshima T, Soen M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue[J]. Nature Communication, 2015, 6:8896.
[23] Muguruma K, Nishiyama A, Kawakami H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells[J]. Cell Reports, 2015, 10(4):537-550.
[24] Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human escs[J]. Cell Stem Cell, 2012, 10(6):771-785.
[25] Saha A, Capowski E, Fernandez Zepeda M A, et al. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea[J]. Cell Stem Cell, 2022, 29(3):460-471.e463.
[26] Takasato M, Er P X, Chiu H S, et al. Kidney organoids from human ips cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526(7574):564-568.
[27] Schutgens F, Rookmaaker M B, Margaritis T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nature Biotechnology, 2019, 37(3):303-313.
[28] Jamieson P R, Dekkers J F, Rios A C, et al. Derivation of a robust mouse mammary organoid system for studying tissue dynamics[J]. Development, 2017, 144(6):1065-1071.
[29] Karthaus W R, Iaquinta P J, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1):163-175.
[30] Van Der Vaart J, Bosmans L, Sijbesma S F, et al. Adult mouse and human organoids derived from thyroid follicular cells and modeling of graves' hyperthyroidism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(51):e2117017118.
[31] Lewis-Israeli Y R, Wasserman A H, Gabalski M A, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease[J]. Nature Communications, 2021, 12(1):5142.
[32] Shkumatov A, Baek K, Kong H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies[J]. PLoS One, 2014, 9(4):e94764.
[33] Salahudeen A A, Choi S S, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids[J]. Nature, 2020, 588(7839):670-675.
[34] Katsura H, Sontake V, Tata A, et al. Human lung stem cell-based alveolospheres provide insights into SARSCoV-2-mediated interferon responses and pneumocyte dysfunction[J]. Cell Stem Cell, 2020, 27(6):890-904. e898.
[35] Kessler M, Hoffmann K, Brinkmann V, et al. The notch and wnt pathways regulate stemness and differentiation in human fallopian tube organoids[J]. Nature Communication, 2015, 6:8989.
[36] Suga H, Kadoshima T, Minaguchi M, et al. Self-formation of functional adenohypophysis in three-dimensional culture[J]. Nature, 2011, 480(7375):57-62.
[37] Koehler K R, Mikosz A M, Molosh A I, et al. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture[J]. Nature, 2013, 500(7461):217-221.
[38] Wagar L E, Salahudeen A, Constantz C M, et al. Modeling human adaptive immune responses with tonsil organoids[J]. Nature Medicine, 2021, 27(1):125-135.
[39] Seet C S, He C, Bethune M T, et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids[J]. Nature Methods, 2017, 14(5):521-530.
[40] Hisha H, Tanaka T, Kanno S, et al. Establishment of a novel lingual organoid culture system:Generation of organoids having mature keratinized epithelium from adult epithelial stem cells[J]. Scientific Reports, 2013, 3(1):3224.
[41] Aihara E, Mahe M M, Schumacher M A, et al. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid[J]. Scientific Reports, 2015, 5(1):17185.
[42] Sakib S, Uchida A, Valenzuela-Leon P, et al. Formation of organotypic testicular organoids in microwell culture[J]. Biology of Reproduction, 2019, 100(6):1648-1660.
[43] Sheridan M A, Fernando R C, Gardner L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta[J]. Nature Protocols, 2020, 15(10):3441-3463.
[44] Poletti M, Arnauts K, Ferrante M, et al. Organoid-based models to study the role of host-microbiota interactions in IBD[J]. Journal of Crohn's and Colitis, 2020, 15(7):1222-1235.
[45] Strikoudis A, Cieślak A, Loffredo L, et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells[J]. Cell Reports, 2019, 27(12):3709-3723.e3705.
[46] Ouchi R E, Togo S, Kimura M, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids[J]. Cell Metabolism, 2019, 30(2):374-384. e376.
[47] Sato T, Stange D E, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772.
[48] Dekkers J F, Wiegerinck C L, de Jonge H R, et al. A functional cftr assay using primary cystic fibrosis intestinal organoids[J]. Nature Medicine, 2013, 19(7):939-945.
[49] Amarachintha S P, Mourya R, Ayabe H, et al. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia[J]. Hepatology, 2022, 75(1):89-103.
[50] Yuki K, Cheng N, Nakano M, et al. Organoid models of tumor immunology[J]. Trends in Immunology, 2020, 41(8):652-664.
[51] Wang W, Yuan T, Ma L, et al. Hepatobiliary tumor organoids reveal hla class i neoantigen landscape and antitumoral activity of neoantigen peptide enhanced with immune checkpoint inhibitors[J]. Advanced Science, 2022, e2105810.
[52] Drost J, Clevers H. Organoids in cancer research[J]. Nature Reviews Cancer, 2018, 18(7):407-418.
[53] Ganesh K, Wu C, O'Rourke K P, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nature Medicine, 2019, 25(10):1607-1614.
[54] Kopper O, de Witte C J, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity[J]. Nature Medicine, 2019, 25(5):838-849.
[55] Broutier L, Mastrogiovanni G, Verstegen M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nature Medicine, 2017, 23(12):1424-1435.
[56] Yao Y, Xu X Y, Yang L F, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e6.
[57] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patientderived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926.
[58] Kijima T, Nakagawa H, Shimonosono M, et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells[J]. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7(1):73-91.
[59] Yan H H N, Siu H C, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e811.
[60] Nuciforo S, Fofana I, Matter M S, et al. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Reports, 2018, 24(5):1363-1376.
[61] Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1):176-187.
[62] Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1-2):373-386.e310.
[63] Lee S H, Hu W H, Matulay J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2):515-528.e517.
[64] Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52):26580-26590.
[65] Tiriac H, Belleau P, Engle D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discovery, 2018, 8(9):1112-1129.
[66] Williamson I A, Arnold J W, Samsa L A, et al. A highthroughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6(3):301-319.
[67] Co J Y, Margalef-Català M, Li X, et al. Controlling epithelial polarity:A human enteroid model for host-pathogen interactions[J]. Cell Reports, 2019, 26(9):2509-2520.e2504.
[68] Foulke-Abel J, In J, Kovbasnjuk O, et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract[J]. Experimental Biology and Medicine (Maywood, N J), 2014, 239(9):1124-1134.
[69] Han Y L, Yang L L, Lacko L A, et al. Human organoid models to study SARS-CoV-2 infection[J]. Nature Methods, 2022, 19(4):418-428.
[70] Sugimoto S, Kobayashi E, Fujii M, et al. An organoidbased organ-repurposing approach to treat short bowel syndrome[J]. Nature, 2021, 592(7852):99-104.
[71] Watanabe S, Kobayashi S, Ogasawara N, et al. Transplantation of intestinal organoids into a mouse model of colitis[J]. Nature Protocols, 2022, 17(3):649-671.
[72] Sampaziotis F, Justin A W, Tysoe O C, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nature Medicine, 2017, 23(8):954-963.
[73] Caplan A, Parent B. Ethics and the emerging use of pig organs for xenotransplantation[J]. The Journal of Heart and Lung Transplantation, 2022, doi:10.1016/j. healun. 2022.06.008.
[74] Ren Y, Yang X, Ma Z J, et al. Developments and opportunities for 3d bioprinted organoids[J]. International Journal of Bioprinting, 2021, 7(3):18-36.
[75] Zheng F Y, Xiao Y, Liu H, et al. Organ-on-a-chip:Patient-specific organoid and organ-on-a-chip:3D cellculture meets 3D printing and numerical simulation[J]. Advanced Biology, 2021, 5(6):e2000024.
[76] Rawal P, Tripathi D M, Ramakrishna S, et al. Prospects for 3D bioprinting of organoids[J]. Bio-Design and Manufacturing, 2021, 4(3):627-640.
[77] Brassard J A, Nikolaev M, Hübscher T, et al. Recapitulating macro-scale tissue self-organization through organoid bioprinting[J]. Nature Materials, 2021, 20(1):22-29.
[78] Carberry B J, Hergert J E, Yavitt F M, et al. 3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices[J]. Biofabrication, 2021, doi:10.1088/1758-10.1088/5090/ac1c98.
[79] Kim E, Choi S, Kang B, et al. Creation of bladder assembloids mimicking tissue regeneration and cancer[J]. Nature, 2020, 588(7839):664-669.
[80] Lawlor K T, Vanslambrouck J M, Higgins J W, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nature Materials, 2021, 20(2):260-271.
[81] Jiang S W, Zhao H R, Zhang W J, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity[J]. Cell Reports Medicine, 2020, 1(9):100161.
[82] Tang M, Xie Q, Gimple R C, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions[J]. Cell Research, 2020, 30(10):833-853.
[83] Grigoryan B, Paulsen S J, Corbett D C, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464.
[84] Kaur S, Tripathi D M, Ghosh S. Three-dimensional bioprinted hepatorganoids in liver failure[J]. Gut, 2021, 70(5):998-999.
[85] Groll J, Boland T, Blunk T, et al. Biofabrication:Reappraising the definition of an evolving field[J]. Biofabrication, 2016, 8(1):013001.
[86] Liu H T, Wang Y Q, Wang H, et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering[J]. Advanced Science, 2020, 7(11):1903739.
[87] Neal J T, Li X N, Zhu J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988.e1916.
[88] Ootani A, Li X, Sangiorgi E, et al. Sustained in vitro intestinal epithelial culture within a wnt-dependent stem cell niche[J]. Nature Medicine, 2009, 15(6):701-706.
[89] Yin S Y, Xi R B, Wu A W, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy[J]. Science Translational Medicine, 2020, 12(549):eaaz1723
[90] Wörsdörfer P, Dalda N, Kern A, et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells[J]. Scientific Reports, 2019, 9:15663.
[91] Wimmer R A, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
[92] Palikuqi B, Nguyen D-H T, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis[J]. Nature, 2020, 585(7825):426-432.
[93] Hofer M, Lutolf M P. Engineering organoids[J]. Nature Reviews Materials, 2021, 6(5):402-420.
[94] LeSavage B L, Suhar R A, Broguiere N, et al. Next-generation cancer organoids[J]. Nature Materials, 2022, 21(2):143-159.
[95] Bayir E, Sendemir A, Missirlis Y F. Mechanobiology of cells and cell systems, such as organoids[J]. Biophysical Reviews, 2019, 11(5):721-728.
[96] Umkehrer C, Holstein F, Formenti L, et al. Isolating live cell clones from barcoded populations using crispra-inducible reporters[J]. Nature Biotechnology, 2021, 39(2):174-178.
[97] Kassis T, Hernandez-Gordillo V, Langer R, et al. Orgaquant:Human intestinal organoid localization and quantification using deep convolutional neural networks[J]. Scientific Reports, 2019, 9:12479.
[98] Esmail S, Danter W R. Artificially induced pluripotent stem cell-derived whole-brain organoid for modelling the pathophysiology of metachromatic leukodystrophy and drug repurposing[J]. Biomedicines, 2021, 9(4):440.
[99] Esmail S, Danter W R. Lung organoid simulations for modelling and predicting the effect of mutations on SARS-CoV-2 infectivity[J]. Computational and Structural Biotechnology Journal, 2021, 19:1701-1712.
[100] Haase K, offeddu G S, Gillrie M R, et al. Endothelial regulation of drug transport in a 3D vascularized tumor model[J]. Advanced Functional Materials, 2020, 30(48):2002444.
[101] Chen M B, Whisler J A, Fröse J, et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics[J]. Nature Protocols, 2017, 12(5):865-880.
[102] Broguiere N, Lüchtefeld I, Trachsel L, et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices[J]. Advanced Materials, 2020, 32(25):e1908299.
[103] 罗会宇,马永康.人源类器官的应用前景、伦理风险与治理建议[J].科技导报, 2022, 40(8):6-13.