[1] Xi Y, Xu P F. Global colorectal cancer burden in 2020 and projections to 2040[J]. Translational Oncology, 2021, 14(10):101174.
[2] Schmitt M, Greten F R. The inflammatory pathogenesis of colorectal cancer[J]. Nature Reviews Immunology, 2021, 21(10):653-667.
[3] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2021, 71(3):209-249.
[4] Auman J T, Mcleod H L. Colorectal cancer cell lines lack the molecular heterogeneity of clinical colorectal tumors[J]. Clinical Colorectal Cancer, 2010, 9(1):40-47.
[5] Hay M, Thomas D W, Craighead J L, et al. Clinical development success rates for investigational drugs[J]. Nature Biotechnology, 2014, 32(1):40-51.
[6] Sato T, Vries R G, Snippert H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
[7] Sprangers J, Zaalberg I C, Maurice M M. Organoid-based modeling of intestinal development, regeneration, and repair[J]. Cell Death&Differentiation, 2021, 28(1):95-107.
[8] Kozlowski M T, Crook C J, Ku H T. Towards organoid culture without matrigel[J]. Communications Biology, 2021, 4:1387.
[9] Toshimitsu K, Takano A, Fujii M, et al. Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer[J]. Nature Chemical Biology, 2022, 18(6):605-614.
[10] Wallach T E, Bayrer J R. Intestinal organoids:New frontiers in the study of intestinal disease and physiology[J]. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64(2):180-185.
[11] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patientderived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926.
[12] Sampaziotis F, Justin A W, Tysoe O C, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nature Medicine, 2017, 23(8):954-963.
[13] Durinikova E, Buzo K, Arena S. Preclinical models as patients' avatars for precision medicine in colorectal cancer:Past and future challenges[J]. Journal of Experimental&Clinical Cancer Research:CR, 2021, 40(1):185.
[14] Weeber F, van de Wetering M, Hoogstraat M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43):13308-13311.
[15] Barker N, van Es J H, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007, 449(7165):1003-1007.
[16] Clevers H. The intestinal crypt, a prototype stem cell compartment[J]. Cell, 2013, 154(2):274-284.
[17] Sailaja B S, He X C, Li L H. The regulatory niche of intestinal stem cells[J]. The Journal of Physiology, 2016, 594(17):4827-4836.
[18] Sato T, van Es J H, Snippert H J, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330):415-418.
[19] Vries R G J, Huch M, Clevers H. Stem cells and cancer of the stomach and intestine[J]. Molecular Oncology, 2010, 4(5):373-384.
[20] Basak O, Beumer J, Wiebrands K, et al. Induced quiescence of Lgr5+stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells[J]. Cell Stem Cell, 2017, 20(2):177-190.e4.
[21] Hilkens J, Timmer N C, Boer M, et al. RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis[J]. Gut, 2017, 66(6):1095-1105.
[22] Barker N, Ridgway R A, van Es J H, et al. Crypt stem cells as the cells-of-origin of intestinal cancer[J]. Nature, 2009, 457(7229):608-611.
[23] Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6):985-999.
[24] Eto T, Miyake K, Nosho K, et al. Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression[J]. The Journal of Pathology, 2018, 245(4):445-455.
[25] Wend P, Holland J D, Ziebold U, et al. Wnt signaling in stem and cancer stem cells[J]. Seminars in Cell&Developmental Biology, 2010, 21(8):855-863.
[26] Lombardo Y, Scopelliti A, Cammareri P, et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice[J]. Gastroenterology, 2011, 140(1):297-309.e6.
[27] Gopalakrishnan N, Sivasithamparam N D, Devaraj H. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma[J]. Biochimie, 2014, 107:310-318.
[28] Kopan R, Ilagan M X G. The canonical Notch signaling pathway:Unfolding the activation mechanism[J]. Cell, 2009, 137(2):216-233.
[29] Zhang Y, Li B, Ji Z Z, et al. Notch1 regulates the growth of human colon cancers[J]. Cancer, 2010, 116(22):5207-5218.
[30] Fender A W, Nutter J M, Fitzgerald T L, et al. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer[J]. Journal of Cellular Biochemistry, 2015, 116(11):2517-2527.
[31] Pal D, Tyagi A, Chandrasekaran B, et al. Suppression of Notch1 and AKT mediated epithelial to mesenchymal transition by Verrucarin J in metastatic colon cancer[J]. Cell Death&Disease, 2018, 9:798.
[32] Fre S, Pallavi S K, Huyghe M, et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15):6309-6314.
[33] van Es J H, van Gijn M E, Riccio O, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells[J]. Nature, 2005, 435(7044):959-963.
[34] Sato T, Stange D E, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772.
[35] Jung P, Sato T, Merlos-Suárez A, et al. Isolation and in vitro expansion of human colonic stem cells[J]. Nature Medicine, 2011, 17(10):1225-1227.
[36] Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition[J]. Cell Stem Cell, 2018, 23(6):787-793.e6.
[37] Hughes C S, Postovit L M, Lajoie G A. Matrigel:Acomplex protein mixture required for optimal growth of cell culture[J]. Proteomics, 2010, 10(9):1886-1890.
[38] Giobbe G G, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture[J]. Nature Communications, 2019, 10:5658.
[39] Luo X B, Fong E L S, Zhu C J, et al. Hydrogel-based colorectal cancer organoid co-culture models[J]. Acta Biomaterialia, 2021, 132:461-472.
[40] Hunt D R, Klett K C, Mascharak S, et al. Engineered matrices enable the culture of human patient-derived intestinal organoids[J]. Advanced Science, 2021, 8(10):2004705.
[41] Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis[J]. Cell Stem Cell, 2016, 18(6):827-838.
[42] Bergin C J, Benoit Y D. Protocol for serial organoid formation assay using primary colorectal cancer tissues to evaluate cancer stem cell activity[J]. STAR Protocols, 2022, 3(1):101218.
[43] Drost J, van Jaarsveld R H, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550):43-47.
[44] Fumagalli A, Oost K C, Kester L, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4):569-578.e7.
[45] de Angelis M L, Francescangeli F, Nicolazzo C, et al. An organoid model of colorectal circulating tumor cells with stem cell features, hybrid EMT state and distinctive therapy response profile[J]. Journal of Experimental&Clinical Cancer Research:CR, 2022, 41(1):86.
[46] Li X N, Nadauld L, Ootani A, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture[J]. Nature Medicine, 2014, 20(7):769-777.
[47] Wang X, Yamamoto Y, Wilson L H, et al. Cloning and variation of ground state intestinal stem cells[J]. Nature, 2015, 522(7555):173-178.
[48] Lewis S K, Nachun D, Martin M G, et al. DNA methylation analysis validates organoids as a viable model for studying human intestinal aging[J]. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9(3):527-541.
[49] Buzzelli J N, Ouaret D, Brown G, et al. Colorectal cancer liver metastases organoids retain characteristics of original tumor and acquire chemotherapy resistance[J]. Stem Cell Research, 2018, 27:109-120.
[50] Wan M L, Wang Y, Zeng Z, et al. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways[J]. Bioscience Reports, 2020, 40(3):BSR20200265.
[51] Angius A, Scanu A M, Arru C, et al. Portrait of cancer stem cells on colorectal cancer:Molecular biomarkers, signaling pathways and miRNAome[J]. International Journal of Molecular Sciences, 2021, 22(4):1603.
[52] Vogelstein B, Papadopoulos N, Velculescu V E, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127):1546-1558.
[53] Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nature Medicine, 2015, 21(3):256-262.
[54] Bolhaqueiro A C F, Ponsioen B, Bakker B, et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids[J]. Nature Genetics, 2019, 51(5):824-834.
[55] Bae J M, Kim J H, Kang G H. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway[J]. Archives of Pathology&Laboratory Medicine, 2016, 140(5):406-412.
[56] Fessler E, Drost J, van Hooff S R, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype[J]. EMBO Molecular Medicine, 2016, 8(7):745-760.
[57] Kawasaki K, Fujii M, Sugimoto S, et al. Chromosome engineering of human colon-derived organoids to develop a model of traditional serrated adenoma[J]. Gastroenterology, 2020, 158(3):638-651.e8.
[58] Lannagan T R M, Lee Y K, Wang T T, et al. Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis[J]. Gut, 2019, 68(4):684-692.
[59] Drost J, van Boxtel R, Blokzijl F, et al. Use of CRISPRmodified human stem cell organoids to study the origin of mutational signatures in cancer[J]. Science, 2017, 358(6360):234-238.
[60] Sakai E R, Nakayama M, Oshima H, et al. Combined mutation of Apc, kras, and Tgfbr2 effectively drives metastasis of intestinal cancer[J]. Cancer Research, 2018, 78(5):1334-1346.
[61] Fumagalli A, Drost J, Suijkerbuijk S J E, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12):E2357-E2364.
[62] O'rourke K P, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer[J]. Nature Biotechnology, 2017, 35(6):577-582.
[63] Roper J, Tammela T, Cetinbas N M, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis[J]. Nature Biotechnology, 2017, 35(6):569-576.
[64] Chen Y P, Zheng X, Wu C P. The role of the tumor microenvironment and treatment strategies in colorectal cancer[J]. Frontiers in Immunology, 2021, 12:792691.
[65] Crotti S, Piccoli M, Rizzolio F, et al. Extracellular matrix and colorectal cancer:How surrounding microenvironment affects cancer cell behavior[J]. Journal of Cellular Physiology, 2017, 232(5):967-975.
[66] Markman J L, Shiao S L. Impact of the immune system and immunotherapy in colorectal cancer[J]. Journal of Gastrointestinal Oncology, 2015, 6(2):208-223.
[67] Neal J T, Li X N, Zhu J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988.e16.
[68] Zheng L L, Wang B, Sun Y F, et al. An oxygen-concentration-controllable multiorgan microfluidic platform for studying hypoxia-induced lung cancer-liver metastasis and screening drugs[J]. ACS Sensors, 2021, 6(3):823-832.
[69] Dijkstra K K, Cattaneo C M, Weeber F, et al. Generation of tumor-reactive T cells by Co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6):1586-1598.e12.
[70] Schnalzger T E, de Groot M H, Zhang C C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids[J]. The EMBO Journal, 2019, 38(12):e100928.
[71] Wen Y G, Xing X P, Harris J W, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer[J]. Cell Death&Disease, 2017, 8(2):e2593.
[72] Hawinkels L J A C, Paauwe M, Verspaget H W, et al. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts[J]. Oncogene, 2014, 33(1):97-107.
[73] Oszvald Á, Szvicsek Z, Sándor G O, et al. Extracellular vesicles transmit epithelial growth factor activity in the intestinal stem cell niche[J]. Stem Cells, 2019, 38(2):291-300.
[74] Szvicsek Z, Oszvald Á, Szabó L, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors[J]. Cellular and Molecular Life Sciences, 2019, 76(12):2463-2476.
[75] Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. The Journal of Experimental Medicine, 2017, 214(3):579-596.
[76] van de Wetering M, Francies H E, Francis J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4):933-945.
[77] Kondo J, Ekawa T, Endo H, et al. High-throughput screening in colorectal cancer tissue-originated spheroids[J]. Cancer Science, 2019, 110(1):345-355.
[78] Du Y H, Li X N, Niu Q K, et al. Development of a miniaturized 3D organoid culture platform for ultra-highthroughput screening[J]. Journal of Molecular Cell Biology, 2020, 12(8):630-643.
[79] Shen X H, Zhang Y C, Xu Z Q, et al. KLF5 inhibition overcomes oxaliplatin resistance in patient-derived colorectal cancer organoids by restoring apoptotic response[J]. Cell Death&Disease, 2022, 13:303.
[80] Crespo M, Vilar E, Tsai S Y, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing[J]. Nature Medicine, 2017, 23(7):878-884.
[81] Costales-Carrera A, Fernández-Barral A, BustamanteMadrid P, et al. Plocabulin displays strong cytotoxic activity in a personalized colon cancer patient-derived 3D organoid assay[J]. Marine Drugs, 2019, 17(11):648.
[82] Aberle M R, Burkhart R A, Tiriac H, et al. Patient-derived organoid models help define personalized management of gastrointestinal cancer[J]. British Journal of Surgery, 2018, 105(2):e48-e60.
[83] Ooft S N, Weeber F, Dijkstra K K, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients[J]. Science Translational Medicine, 2019, 11(513):eaay2574.
[84] Yao Y, Xu X Y, Yang L F, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e6.
[85] Schumacher D, Andrieux G, Boehnke K, et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures[J]. PLoS Genetics, 2019, 15(3):e1008076.
[86] Cho Y H, Ro E J, Yoon J S, et al. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation[J]. Nature Communications, 2020, 11:5321.
[87] Pauli C, Hopkins B D, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discovery, 2017, 7(5):462-477.
[88] Narasimhan V, Wright J A, Churchill M, et al. Mediumthroughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy[J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research, 2020, 26(14):3662-3670.
[89] Wang M, Yu H, Zhang T, et al. In-depth comparison of matrigel dissolving methods on proteomic profiling of organoids[J]. Molecular&Cellular Proteomics:MCP, 2022, 21(1):100181.
[90] Romero-López M, Trinh A L, Sobrino A, et al. Recapitulating the human tumor microenvironment:Colon tumorderived extracellular matrix promotes angiogenesis and tumor cell growth[J]. Biomaterials, 2017, 116:118-129.
[91] Hernandez-Gordillo V, Kassis T, Lampejo A, et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids[J]. Biomaterials, 2020, 254:120125.
[92] Kim S, Min S, Choi Y S, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids[J]. Nature Communications, 2022, 13:1692.
[93] Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630):560-564.
[94] Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826):574-578.
[95] Gjorevski N, Nikolaev M, Brown T E, et al. Tissue geometry drives deterministic organoid patterning[J]. Science, 2022, 375(6576):eaaw9021.
[96] Clevers H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7):1586-1597.
[97] Holloway E M, Wu J H, Czerwinski M, et al. Differentiation of human intestinal organoids with endogenous vascular endothelial cells[J]. Developmental Cell, 2020, 54(4):516-528.e7.
[98] Rajasekar S, Lin D S Y, Abdul L, et al. IFlowPlate-a customized 384-well plate for the culture of perfusable vascularized colon organoids[J]. Advanced Materials, 2020, 32(46):e2002974.
[99] Seiler K M, Bajinting A, Alvarado D M, et al. Patientderived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic gut-on-a-chip model[J]. Scientific Reports, 2020, 10:3842.
[100] Nashimoto Y, Okada R, Hanada S, et al. Vascularized cancer on a chip:The effect of perfusion on growth and drug delivery of tumor spheroid[J]. Biomaterials, 2020, 229:119547.
[101] Enrico A, Voulgaris D, Östmans R, et al. 3D microvascularized tissue models by laser-based cavitation molding of collagen[J]. Advanced Materials, 2022, 34(11):2109823.
[102] Akhtar A A, Sances S, Barrett R, et al. Organoid and organ-on-a-chip systems:New paradigms for modeling neurological and gastrointestinal disease[J]. Current Stem Cell Reports, 2017, 3(2):98-111.
[103] Shirure V S, Hughes C C W, George S C. Engineering vascularized organoid-on-a-chip models[J]. Annual Review of Biomedical Engineering, 2021, 23:141-167.