[1] Yadav A, Gaur A, Jain S M, et al. Development navigation, guidance&control program for GPS based autonomous ground vehicle (AGV) using soft computing techniques[J]. Materials Today:Proceedings, 2020, 29:530-535.
[2] 王云鹏,鲁光泉,于海洋.车路协同环境下的交通工程[J].中国工程科学, 2018, 20(2):106-110.
[3] 罗燊,张永伟."新基建"背景下城市智能基础设施的建设思路[J].城市发展研究, 2020, 27(11):51-56.
[4] 张颖.从单车智能到车路协同未来交通的智能之路还有多远?[J].汽车与配件, 2020,(24):50-52.
[5] 杜豫川,刘成龙,吴荻非,等.新一代智慧高速公路系统架构设计[EB/OL].[2021-07-10]. http://kns.cnki.net/kcms/detail/61.1313.U.20210316.1415.004.html.
[6] 岑晏青,宋向辉,王东柱,等.智慧高速公路技术体系构建[J].公路交通科技, 2020, 37(7):111-121.
[7] Leiva-Padilla P, Moreno-Navarro F, Iglesias G, et al. Interpretation of the magnetic field signals emitted by encoded asphalt pavement materials[J]. Sustainability, 2020, 12(18):7300.
[8] 李斌,侯德藻,张纪升,等.论智能车路协同的概念与机理[J].公路交通科技, 2020, 37(10):134-141.
[9] Meng L, Blokpoel R. A sophisticated intelligent urban road-transport network and cooperative systems infrastructure for highly automated vehicles[C]//Proceedings of World Congress on Intelligent Transport Systems. Montreal:TRB, 2016.
[10] Pompigna A, Mauro R. Smart roads:A state of the art of highways innovations in the Smart Age[J]. Engineering Science and Technology, an International Journal, 2022, 25:100986.
[11] Shi X. More than smart pavements:Connected infrastructure paves the way for enhanced winter safety and mobility on highways[J]. Journal of Infrastructure Preservation and Resilience, 2020, 1(1):1-12.
[12] 吴建清,宋修广.智慧公路关键技术发展综述[J].山东大学学报(工学版), 2020, 50(4):52-69.
[13] 徐志刚,李金龙,赵祥模,等.智能公路发展现状与关键技术[J].中国公路学报, 2019, 32(8):1-24.
[14] Wang J, Niu H. A distributed dynamic route guidance approach based on short-term forecasts in cooperative infrastructure-vehicle systems[J]. Transportation Research Part D:Transport and Environment, 2019, 66:23-34.
[15] 陈超,吕植勇,付姗姗,等.国内外车路协同系统发展现状综述[J].交通信息与安全, 2011, 29(1):102-105, 9.
[16] Baskar L D, de Schutter B, Hellendoorn H. Optimal routing for intelligent vehicle highway systems using mixed integer linear programming[J]. IFAC Proceedings Volumes, 2009, 42(15):569-575.
[17] Khodayari A, Ghaffari A, Ameli S, et al. A historical review on lateral and longitudinal control of autonomous vehicle motions[C]//IEEE. Proceedings of 2010 International Conference on Mechanical and Electrical Technology. Singapore:IEEE, 2010:421-429.
[18] Bar Hillel A, Lerner R, Levi D, et al. Recent progress in road and lane detection:A survey[J]. Machine Vision and Applications, 2014, 25(3):727-745.
[19] Wang Y, Teoh E K, Shen D. Lane detection and tracking using B-snake[J]. Image and Vision Computing, 2004, 22(4):269-280.
[20] Clanton J M, Bevly D M, Hodel A S. A low-cost solution for an integrated multisensor lane departure warning system[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1):47-59.
[21] Labayrade R. How autonomous mapping can help a road lane detection system?[C]//20069th International Conference on Control, Automation, Robotics and Vision. Singapore:IEEE, 2006:1-6.
[22] Belaroussi R, Tarel Jean-Philippe, Hautiere N. Vehicle attitude estimation in adverse weather conditions using a camera, a GPS and a 3D road map[C]//2011 IEEE Intelligent Vehicles Symposium (IV). Baden:IEEE, 2011:782-787.
[23] Wang J, Ni D, Li K. RFID-based vehicle positioning and its applications in connected vehicles[J]. Sensors, 2014, 14(3):4225-4238.
[24] Wang X, Xu L, Sun H, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7):2075-2084.
[25] Mohsen I, Houdali N, Ditchi T, et al. V2I electromagnetic system for lateral position estimation of a vehicle[J]. Sensors and Actuators A:Physical, 2018, 274:141-147.
[26] Santos P, Holé S, Filloy C, et al. Magnetic vehicle guidance[J]. Sensor Review, 2008, 28(2):132-135.
[27] 吴祥.基于电磁导航智能车的控制研究及实现[D].芜湖:安徽工程大学, 2016.
[28] Sadayuki T. A history of automated highway systems in Japan and future issues[C]//2008 IEEE International Conference on Vehicular Electronics and Safety. Columbus:IEEE, 2008:2-3.
[29] 徐海贵.基于磁阻传感器阵列的车辆自主导航系统研究[D].上海:上海交通大学, 2009.
[30] Tsugawa S, Aoki M, Hosaka A, et al. A survey of present IVHS activities in Japan[J]. Control Engineering Practice, 1997, 5(11):1591-1597.
[31] Tan H-S, Guldner J, Chen C, et al. Changing lanes on automated highways with look-down reference systems1[J]. IFAC Proceedings Volumes, 1998, 31(1):67-72.
[32] Guldner J, Patwardhan S, Tan H-S, et al. Coding of Road Information for Automated Highways[J]. ITS Journal-Intelligent Transportation Systems Journal, 1999, 4(3/4):187-207.
[33] Shladover S E, Desoer C A, Hedrick J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1):114-130.
[34] 吴超仲.基于磁道钉导航的车道保持系统信息融合与控制技术研究[D].武汉:武汉理工大学, 2002.
[35] 李斌,王春燕,吴涛,等.中国智能公路磁诱导技术研究进展[J].公路交通科技, 2004(11):66-69.
[36] 唐磊.磁诱导辅助驾驶系统在冬季除雪中的应用[J].公路, 2013, 58(11):221-224.
[37] Hopstock D M, Wald L D. Verification of field model for magnetic pavement marking tape[J]. IEEE Transactions on Magnetics, 1996, 32(5):5088-5090.
[38] Guldner J, Tan H-S, Patwardhan S. Analysis of automatic steering control for highway vehicles with look-down lateral reference systems[J]. Vehicle System Dynamics, 1996, 26(4):243-269.
[39] Tan H-S, Guldner J, Chen C, et al. Lane changing with look-down reference systems on automated highways[J]. Control Engineering Practice, 2000, 8(9):1033-1043.
[40] Houdal N, Ditchi T, Géron E, et al. RF infrastructure cooperative system for in lane vehicle localization[J]. Electronics, 2014, 3(4):598-608.
[41] Lv Z Y, Ren F Y, Zhang S S, et al. Sensing mechanism of magnetic asphalt road materials[C]//IEEE. Proceedings of 20185th International Conference on Information Science and Control Engineering (ICISCE). Zhengzhou:IEEE, 2018:983-986.
[42] Moreno-Navarro F, Iglesias G R, Rubio-Gámez M C. Encoded asphalt materials for the guidance of autonomous vehicles[J]. Automation in Construction, 2019, 99:109-113.
[43] 孙瑜,范平志.射频识别技术及其在室内定位中的应用[J].计算机应用, 2005(5):1205-1208.
[44] 郑坤.基于RFID的车辆定位系统设计及定位方法研究[D].长春:吉林大学, 2016.
[45] Baum M, Overmeyer L. Passive 13.56 MHz RFID transponders for vehicle navigation and lane guidance[C]//Proceedings of the 1st International EURASIP Workshop on RFID Technology. Piseataway:NJ IEEE, 2007:83-86.
[46] Walvekar S R, Burkholder R J. FEKOTM modeling study of passive UHF RFID tags embedded in pavement[C]//2018 International Applied Computational Electromagnetics Society Symposium (ACES). Denver:IEEE, 2018:1-2.
[47] Song X, Li X, Tang W, et al. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors[J]. Sensors, 2014, 14(12):23095-23118.
[48] Pochettino O, Kondapalli S H, Aono K, et al. Real-time infrastructure-to-vehicle communication using RF-triggered wireless sensors[C]//IEEE. Proceedings of 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). Dallas, TX:IEEE, 2019:556-559.
[49] Malekian R, Kavishe A F, Maharaj B T, et al. Smart vehicle navigation system using hidden markov model and RFID technology[J]. Wireless Personal Communications, 2016, 90(4):1717-1742.
[50] Guerrero-Ibáñez J, Zeadally S, Contreras-Castillo J. Sensor technologies for intelligent transportation systems[J]. Sensors, 2018, 18(4):1-24.
[51] Oyekanlu E A, Smith A C, Thomas W P, et al. A review of recent advances in automated guided vehicle technologies:Integration challenges and research areas for 5Gbased smart manufacturing applications[J]. IEEE Access, 2020, 8:202312-202353.
[52] Lu S, Xu C, Zhong R Y, et al. A RFID-enabled positioning system in automated guided vehicle for smart factories[J]. Journal of Manufacturing Systems, 2017, 44:179-190.
[53] 刘林.微缩自主车横向控制及纵向速度自适应控制[D].长春:吉林大学, 2017.
[54] Liang X, Guler S I, Gayah V V. Joint optimization of signal phasing and timing and vehicle speed guidance in a connected and autonomous vehicle environment[J]. Transportation Research Record, 2019, 2673(4):70-83.
[55] Talebpour A, Mahmassani H S, Hamdar S H. Speed harmonization:Evaluation of effectiveness under congested conditions[J]. Transportation Research Record, 2013, 2391(1):69-79.
[56] Wang Linbing,王含笑,赵千,等.智能路面发展与展望[J].中国公路学报, 2019, 32(4):50-72.
[57] Galanis I, Anagnostopoulos I, Gurunathan P, et al. Environmental-based speed recommendation for future smart cars[J]. Future Internet, 2019, 11(3):78-95.
[58] 向新胜.车路协同在智慧交通中的应用分析[J].道路交通管理, 2017(8):39.
[59] Tabatabai H, Aljuboori M. A novel concrete-based sensor for detection of ice and water on roads and bridges[J]. Sensors, 2017, 17(12):2912.
[60] 陆凯旋.基于智能道钉的路面冰雪及水体检测技术[D].哈尔滨:哈尔滨工业大学, 2020.
[61] 桂康.路面气象状态识别关键技术研究[D].武汉:华中科技大学, 2019.
[62] Kyriakidis M, Happee R, de Winter J C F. Public opinion on automated driving:Results of an international questionnaire among 5000 respondents[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2015, 32:127-140.
[63] Fagnant D J, Kockelman K. Preparing a nation for autonomous vehicles:Opportunities, barriers and policy recommendations[J]. Transportation Research Part A:Policy and Practice, 2015, 77:167-181.
[64] Ma J, Li X, Shladover S, et al. Freeway speed harmonization[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1):78-89.
[65] Shi Z-Q, Chung D D L. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion[J]. Cement and Concrete Research, 1999, 29(3):435-439.
[66] 韦文兵.基于碳纤维混凝土(粗骨料)压敏性的交通测速系统研究[D].汕头:汕头大学, 2003.
[67] Han B, Zhang K, Yu X, et al. Nickel particle-based self-sensing pavement for vehicle detection[J]. Measurement, 2011, 44(9):1645-1650.
[68] Han B, Zhang K, Burnham T, et al. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection[J]. Smart Materials and Structures, 2012, 22(1):15020.
[69] 龚学进.碳纤维复合材料在交通越线违规检测中的实验研究[D].武汉:武汉理工大学, 2010.
[70] Monteiro A O, Loredo A, Costa P M F J, et al. A pressure-sensitive carbon black cement composite for traffic monitoring[J]. Construction and Building Materials, 2017, 154:1079-1086.
[71] Xiao J, Zou X, Xu W. EPave:A self-powered wireless sensor for smart and autonomous pavement[J]. Sensors, 2017, 17(10):2207.
[72] 邹祥.基于压电效应的沥青路面自供电无线传感系统设计与研究[D].西安:长安大学, 2018.
[73] 翟英博.基于温差发电的道路监测传感器节点研究与设计[D].西安:长安大学, 2019.
[74] Rhimi M, Lajnef N, Chatti K. A self-powered sensing system for continuous fatigue monitoring of in-service pavements[J]. International Journal of Pavement Research and Technology, 2012(5):303-310.
[75] Guo S, Wang F, Yang Y, et al. Energy-efficient cooperative for simultaneous wireless information and power transfer in clustered wireless sensor networks[J]. IEEE Transactions on Communications, 2015, 63(11):4405-4417.
[76] Mallick R B, Chen B-L, Bhowmick S. Harvesting energy from asphalt pavements and reducing the heat island effect[J]. International Journal of Sustainable Engineering, 2009, 2(3):214-228.
[77] Hasni H, Alavi A H, Chatti K, et al. A Self-powered surface sensing approach for detection of bottom-up cracking in asphalt concrete pavements:Theoretical/numerical modeling[J]. Construction and Building Materials, 2017, 144:728-746.
[78] Cho J Y, Kim K-B, Hwang W S, et al. A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system[J]. Applied Energy, 2019, 242:294-301.
[79] 耿洪杨.应用于自供电路面监测的集成温度传感器研究与设计[D].西安:长安大学, 2019.
[80] Cook-Chennault K A, Thambi N, Bitetto M A, et al. Piezoelectric energy harvesting:A green and clean alternative for sustained power production[J]. Bulletin of Science, Technology&Society, 2008(6):496-509.
[81] Abbasi A. Application of piezoelectric materials and piezoelectric network for smart roads[J]. International Journal of Electrical and Computer Engineering, 2013(6):857-862.
[82] Moure A, Izquierdo Rodríguez M A, Rueda S H, et al. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting[J]. Energy Conversion and Management, 2016, 112:246-253.
[83] Hou Y, Wang L, Wang D, et al. A preliminary study on the IoT-based pavement monitoring platform based on the piezoelectric-cantilever-beam powered sensor[J]. Advances in Materials Science and Engineering, 2017, 2017:1-6.
[84] Manosalvas-Paredes M, Lajnef N, Chatti K, et al. Data compression approach for long-term monitoring of pavement structures[J]. Infrastructures, 2020, 5(1):1-12.
[85] Ji X, Hou Y, Chen Y, et al. Fabrication and performance of a self-powered damage-detection aggregate for asphalt pavement[J]. Materials&Design, 2019, 179:107890.
[86] Homami H R. On chip micro power self generator for smart pavement material application[D]. State of New York:City University of New York, 2013.
[87] Chen T D, Kockelman K M, Hanna J P. Operations of a shared, autonomous, electric vehicle fleet:Implications of vehicle&charging infrastructure decisions[J]. Transportation Research Part A:Policy and Practice, 2016, 94:243-254.
[88] Mohamed A A S, Meintz A, Zhu L. System design and optimization of in-route wireless charging infrastructure for shared automated electric vehicles[J]. IEEE Access, 2019, 7:79968-79979.
[89] Nguyen T, Xie M, Liu X, et al. Platooning of autonomous public transport vehicles:The influence of ride comfort on travel delay[J]. Sustainability, 2019, 11(19):5237.
[90] Yu J J Q, Lam A Y S. Autonomous vehicle logistic system:Joint routing and charging strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7):2175-2187.
[91] Ahmad A, Alam M S, Chabaan R. A comprehensive review of wireless charging technologies for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):38-63.
[92] 吴璪.电动汽车动态充电模式相邻导轨激磁电流同步策略[D].重庆:重庆大学, 2019.
[93] Li S, Liu Z, Zhao H, et al. Wireless power transfer by electric field resonance and its application in dynamic charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10):6602-6612.
[94] 李锐杰.磁耦合谐振式无线电能传输特性研究及优化[D].西安:西安科技大学, 2019.
[95] Amditis A, Karaseitanids G, Damousis I, et al. Dynamic wireless charging for more efficient FEVs:The fabric project concept[C]//IET. Proceedings of MedPower 2014. Athens:IET, 2014:1-6.
[96] 李峰,孙轩,朱兴一,等.路面材料磁化对无线电能传输的能量损失效应研究[J].中国公路学报, 2021, 34(3):71-79.
[97] Villa J, Sanz J, Peri J, et al. Victoria project:Static and dynamic wireless charging for electric buses[C]//IDTechEx. Proceedings of the Business Intelligence on Emerging Technologies IDTechEx Conference. Berlin:IDTechEx, 2016:27-28.
[98] Azad A N, Echols A, Kulyukin V A, et al. Analysis, optimization, and demonstration of a vehicular detection system intended for dynamic wireless charging applications[J]. IEEE Transactions on Transportation Electrification, 2019, 5(1):147-161.
[99] Chen F, Kringo, Nicoken. Towards new infrastructure materials for on-the-road charging[C]//2014 IEEE International Electric Vehicle Conference (IEVC). Florence:IEEE, 2014:1-5.
[100] Chen F, Taylor N, Balieu R, et al. Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road:Dielectric power loss due to pavement materials[J]. Construction and Building Materials, 2017, 147:9-16.
[101] 胡峥峥,刘国权,杨大峰,等.树脂基透波混凝土材料的研究[J].兵器材料科学与工程, 2012, 35(3):42-45.
[102] Choi S Y, Jeong S Y, Gu B W, et al. Ultraslim S-type power supply rails for roadway-powered electric vehicles[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6456-6468.
[103] Amirpour M, Kim S, Battley M P, et al. Coupled electromagnetic-thermal analysis of roadway inductive power transfer pads within a model pavement[J]. Applied Thermal Engineering, 2021, 189:116710.
[104] Barnes A N. Thermal modeling and analysis of roadway embedded wireless power transfer modules[D]. State of Utah:Utah State University, 2020.
[105] Varghese B J, Kamineni A, Roberts N, et al. Design considerations for 50 kW dynamic wireless charging with concrete-embedded Coils[C]//Proceedings of 2020 IEEE PELS Workshop on Emerging Technologies:Wireless Power Transfer (WoW). Seoul:IEEE, 2020:40-44.
[106] Chen F, Taylor N, Kringos N. Electrification of roads:Opportunities and challenges[J]. Applied Energy, 2015, 150:109-119.
[107] Ceravolo R, Miraglia G, Surace C, et al. A computational methodology for assessing the time-dependent structural performance of electric road infrastructures[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(9):701-716.
[108] Marmiroli B, Dotelli G, Spessa E. Life cycle assessment of an on-road dynamic charging infrastructure[J]. Applied Sciences, 2019, 9(15):3117.
[109] Nguyen M L, Hornych P, Perez S, et al. Development of inductive charging pavement for electric buses in urban areas[C]//ITS. Proceedings of 22nd ITS World Congress. Bordeaux:ITS, 2015:1-12.
[110] Beeldens A, Hauspie P, Perik H. Inductive charging through concrete roads:A belgian case study and application[C]//ERF. Proceedings of 1st European Road Infrastructure Congress. Leeds:ERF, 2016:1-10.
[111] Ceravolo R, Miraglia G, Surace C. Fatigue damage assessment of electric roads based on probabilistic load models[J]. Journal of Physics:Conference Series, 2017, 842:12037.
[112] Chabot A, Deep P. 2D multilayer solution for an electrified road with a built-in charging box[J]. Road Materials and Pavement Design, 2019, 20(Suppl2):S590-S603.
[113] Levenberg E. Estimating vehicle speed with embedded inertial sensors[J]. Transportation Research Part C:Emerging Technologies, 2014, 46:300-308.
[114] Xue W, Wang L, Wang D. A prototype integrated monitoring system for pavement and traffic based on an embedded sensing network[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1380-1390.
[115] 于华洋,马涛,王大为,等.中国路面工程学术研究综述·2020[J].中国公路学报, 2020, 33(10):1-66.
[116] Voskuilen J, Montfort J V, Naus R, et al. Rollpave, a prefabricated asphalt wearing course[EB/OL].[2021-07-10]. http://data.abacus.hr/h-a-d/radovi_s_kongresa/nagoya_japan_2010/90193.pdf.
[117] Strache S, Wunderlich R, Heinen S. Self-powered intelligent sensor node concept for monitoring of road and traffic conditions[J]. Sensors&Transducers, 2012, 14(2):93-110.
[118] Wang D, Schacht A, Chen X, et al. Innovative treatment to winter distresses using a prefabricated rollable pavement based on a textile-reinforced concrete[J]. Journal of Performance of Constructed Facilities, 2016, 30(1):C4014008.
[119] Dong Y S, Hou Y, Cao D W, et al. Study on road performance of prefabricated rollable asphalt mixture[J]. Road materials and Pavement Design, 2017, 18(Suppl 3):65-75.
[120] Dong Y S, Hou Y, Wang Z F, et al. Self-healing performance of rollable asphalt mixture[J]. Journal of Materials in Civil Engineering, 2019, 31(7):4019117.
[121] Yang J, Zhu X, Li L, et al. Prefabricated flexible conductive composite overlay for active deicing and snow melting[J]. Journal of Materials in Civil Engineering, 2018, 30(11):4018283.
[122] 代书凝.可卷曲式预制降噪路面的性能研究[D].乌鲁木齐:新疆大学, 2019.
[123] 代书凝,呙润华,高晓通,等.玄武岩纤维掺量对可卷曲沥青路面路用性能的影响研究[J].新型建筑材料, 2019, 46(4):137-139.
[124] Vaitkus A, Andriejauskas T, Šernas O, et al. Definition of concrete and composite precast concrete pavements texture[J]. Transport (Vilnius, Lithuania), 2019, 34(3):404-414.
[125] Cardno C A. "Touch Screens" for roadways:Colorado tests smart pavement[J]. Civil Engineering Magazine, 2019, 89(1):36-37.
[126] Shekhar A, Kumaravel V K, Klerks S, et al. Harvesting roadway solar energy-performance of the installed infrastructure integrated PV bike path[J]. IEEE Journal of Photovoltaics, 2018, 8(4):1066-1073.
[127] Dinh N. Precast ultra-thin whitetopping (PUTW) in Singapore and its application for electrified roadways[D]. Free State of Bavaria:Technische Universitaet Muenchen, 2016.
[128] Hornych P, Nguyen M L, Kerzreho J P, et al. Full scale test on prefabricated slabs for electrical supply by induction of urban transport systems[C]//Proceedings of Transport Research Arena. Paris:TRA, 2014:1-10.
[129] Chong H Y, Lopez R, Wang J, et al. Comparative analysis on the adoption and use of BIM in road infrastructure projects[J]. Journal of Management in Engineering, 2016, 32(6):5016021.
[130] Mirboland M, Smarsly K. BIM-based description of intelligent transportation systems for roads[J]. Infrastructures (Basel), 2021, 6(4):51.
[131] Tang F, Ma T, Guan Y, et al. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS[J]. Automation in Construction, 2020, 111:103066.
[132] Smarsly K, Mirboland M. BIM-based simulation of intelligent transportation systems[C]//Proceedings of the 2020 European Navigation Conference (ENC). Dresden:IEEE, 2020:1-10.
[133] Costin A, Adibfar A, Hu H, et al. Building information modeling (BIM) for transportation infrastructure-literature review, applications, challenges, and recommendations[J]. Automation in Construction, 2018, 94:257-281.
[134] Ma C, Wang Y, Xu H. Research on prefabricated structure design method based on BIM technology[J]. IOP Conference Series:Materials Science and Engineering, 2020, 750:012195.
[135] 王建伟,高超,董是,等.道路基础设施数字化研究进展与展望[J].中国公路学报, 2020, 33(11):101-124.
[136] Tang F, Ma T, Zhang J, et al. Integrating three-dimensional road design and pavement structure analysis based on BIM[J]. Automation in Construction, 2020, 113:103152.
[137] Jackson R J, Wojcik A, Miodownik M. 3D Printing of asphalt and its effect on mechanical properties[J]. Materials&Design, 2018, 160:468-474.
[138] Jackson R J, Patrick P S, Miodownik M. Functionally graded 3D printed asphalt composites[J]. Materials Letters:X, 2020, 7:100047.
[139] Yeon J, Kang J, Yan W. Spall damage repair using 3D printing technology[J]. Automation in Construction, 2018, 89:266-274.
[140] 张守祺,昂源,李苗,等. 3D打印对装配式混凝土路面板可循环性的影响研究[J].硅酸盐通报, 2020, 39(8):2433-2440.
[141] 李结义,何凡,石红磊,等. 3D打印技术在路面修复工程的应用探讨[J].公路, 2019, 64(4):51-55.
[142] Safayet A J. Designing and testing 3-D printed Waferbox with embedded PZT sensors to identify the shape effect on energy harvesting[D]. Georgia:Georgia Southern University, 2018.
[143] Johnson C. Readiness of the road network for connected and autonomous vehicles[R]. London:RAC Foundation, 2017.
[144] Alawadhi M, Almazrouie J, Kamil M, et al. A systematic literature review of the factors influencing the adoption of autonomous driving[J]. International Journal of System Assurance Engineering and Management, 2020, 11(6):1065-1082.
[145] Rillings J H. Automated highways[J]. Scientific American, 1997, 277(4):80-85.
[146] Cheon. An overview of automated highway systems (AHS) and the social and institutional challenges they face[EB/OL].[2021-07-10]. http://scholarship.org/uc/item/8j86h0c.
[147] Hill B T. Smart Highways:Challenges facing dot's intelligent vehicle highway systems program. Testimony[R]. Washington:U. S. General Accounting Office, 1994.
[148] Muller S. Driverless:Intelligent cars and the road ahead[Z]. Berghahn Books, Inc. 2017:136
[149] Shladover S E. Why we should develop a truly automated highway system[J]. Transportation Research Record, 1998, 1651(1):66-73.