综述

自动驾驶背景下智能路面研发进展

  • 呙润华 ,
  • 刘思铨 ,
  • 周晶
展开
  • 清华大学土木工程系, 北京 100084
呙润华,副教授,研究方向为路基路面工程、交通基础设施养护管理等,电子信箱:guorh@tsinghua.edu.cn

收稿日期: 2021-08-02

  修回日期: 2021-09-14

  网络出版日期: 2022-08-05

基金资助

清华大学-丰田联合研究院跨学科专项项目(20203910013)

Development on smart pavement under the background of autonomous driving

  • GUO Runhua ,
  • LIU Siquan ,
  • ZHOU Jing
Expand
  • Department of Civil Engineering, Tsinghua University, Beijing 100084, China

Received date: 2021-08-02

  Revised date: 2021-09-14

  Online published: 2022-08-05

摘要

综述了自动驾驶背景下智能路面的研究进展和发展趋势。介绍了智能路面为实现与AVs协同交互所需具备的3项关键技术:自导航技术通过在路面中嵌入车辆导航标志为AVs提供位置信息;自感知技术通过对道路气象信息和交通流信息的感知和分析,为AVs推荐安全车速,减少交通事故;自充电技术在解决充电系统可行性的基础上,需研究高透波率和导热路面材料以及新型复合路面结构。总结了智能路面为保证精细化施工和嵌入式元件的使用寿命而采用的预制式路面技术、BIM和3D打印3项先进建造技术。并指出除关键技术问题,智能路面的推广还面临社会、经济、法律和环境等非技术问题。

本文引用格式

呙润华 , 刘思铨 , 周晶 . 自动驾驶背景下智能路面研发进展[J]. 科技导报, 2022 , 40(12) : 73 -89 . DOI: 10.3981/j.issn.1000-7857.2022.12.007

Abstract

This paper reviews the research progress and the development trend of the smart pavement in the context of the autonomous driving. Three key technologies of the smart pavement are identified to realize the cooperative interaction with the AVs, the self-navigation technology provides the location information for the AVs by embedding the vehicle navigation signs in the pavement; the self-sensing technology can recommend the safe speed for the AVs and reduce the traffic accidents through the perception and the analysis of the road weather information and the traffic flow information; and the self-charging technology involves problems of the high electromagnetic resistance and the thermal conductivity pavement materials and the new composite pavement structures, related with the feasibility of the charging system. Three advanced construction technologies of prefabricated pavement technology are discussed, the BIM and the 3D printing are used by the smart pavement to ensure the service life of the refined construction and the embedded components. Finally, it is pointed out that in addition to the key technical problems, the promotion of the intelligent pavement also faces social, economic, legal and environmental non-technical problems.

参考文献

[1] Yadav A, Gaur A, Jain S M, et al. Development navigation, guidance&control program for GPS based autonomous ground vehicle (AGV) using soft computing techniques[J]. Materials Today:Proceedings, 2020, 29:530-535.
[2] 王云鹏,鲁光泉,于海洋.车路协同环境下的交通工程[J].中国工程科学, 2018, 20(2):106-110.
[3] 罗燊,张永伟."新基建"背景下城市智能基础设施的建设思路[J].城市发展研究, 2020, 27(11):51-56.
[4] 张颖.从单车智能到车路协同未来交通的智能之路还有多远?[J].汽车与配件, 2020,(24):50-52.
[5] 杜豫川,刘成龙,吴荻非,等.新一代智慧高速公路系统架构设计[EB/OL].[2021-07-10]. http://kns.cnki.net/kcms/detail/61.1313.U.20210316.1415.004.html.
[6] 岑晏青,宋向辉,王东柱,等.智慧高速公路技术体系构建[J].公路交通科技, 2020, 37(7):111-121.
[7] Leiva-Padilla P, Moreno-Navarro F, Iglesias G, et al. Interpretation of the magnetic field signals emitted by encoded asphalt pavement materials[J]. Sustainability, 2020, 12(18):7300.
[8] 李斌,侯德藻,张纪升,等.论智能车路协同的概念与机理[J].公路交通科技, 2020, 37(10):134-141.
[9] Meng L, Blokpoel R. A sophisticated intelligent urban road-transport network and cooperative systems infrastructure for highly automated vehicles[C]//Proceedings of World Congress on Intelligent Transport Systems. Montreal:TRB, 2016.
[10] Pompigna A, Mauro R. Smart roads:A state of the art of highways innovations in the Smart Age[J]. Engineering Science and Technology, an International Journal, 2022, 25:100986.
[11] Shi X. More than smart pavements:Connected infrastructure paves the way for enhanced winter safety and mobility on highways[J]. Journal of Infrastructure Preservation and Resilience, 2020, 1(1):1-12.
[12] 吴建清,宋修广.智慧公路关键技术发展综述[J].山东大学学报(工学版), 2020, 50(4):52-69.
[13] 徐志刚,李金龙,赵祥模,等.智能公路发展现状与关键技术[J].中国公路学报, 2019, 32(8):1-24.
[14] Wang J, Niu H. A distributed dynamic route guidance approach based on short-term forecasts in cooperative infrastructure-vehicle systems[J]. Transportation Research Part D:Transport and Environment, 2019, 66:23-34.
[15] 陈超,吕植勇,付姗姗,等.国内外车路协同系统发展现状综述[J].交通信息与安全, 2011, 29(1):102-105, 9.
[16] Baskar L D, de Schutter B, Hellendoorn H. Optimal routing for intelligent vehicle highway systems using mixed integer linear programming[J]. IFAC Proceedings Volumes, 2009, 42(15):569-575.
[17] Khodayari A, Ghaffari A, Ameli S, et al. A historical review on lateral and longitudinal control of autonomous vehicle motions[C]//IEEE. Proceedings of 2010 International Conference on Mechanical and Electrical Technology. Singapore:IEEE, 2010:421-429.
[18] Bar Hillel A, Lerner R, Levi D, et al. Recent progress in road and lane detection:A survey[J]. Machine Vision and Applications, 2014, 25(3):727-745.
[19] Wang Y, Teoh E K, Shen D. Lane detection and tracking using B-snake[J]. Image and Vision Computing, 2004, 22(4):269-280.
[20] Clanton J M, Bevly D M, Hodel A S. A low-cost solution for an integrated multisensor lane departure warning system[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1):47-59.
[21] Labayrade R. How autonomous mapping can help a road lane detection system?[C]//20069th International Conference on Control, Automation, Robotics and Vision. Singapore:IEEE, 2006:1-6.
[22] Belaroussi R, Tarel Jean-Philippe, Hautiere N. Vehicle attitude estimation in adverse weather conditions using a camera, a GPS and a 3D road map[C]//2011 IEEE Intelligent Vehicles Symposium (IV). Baden:IEEE, 2011:782-787.
[23] Wang J, Ni D, Li K. RFID-based vehicle positioning and its applications in connected vehicles[J]. Sensors, 2014, 14(3):4225-4238.
[24] Wang X, Xu L, Sun H, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7):2075-2084.
[25] Mohsen I, Houdali N, Ditchi T, et al. V2I electromagnetic system for lateral position estimation of a vehicle[J]. Sensors and Actuators A:Physical, 2018, 274:141-147.
[26] Santos P, Holé S, Filloy C, et al. Magnetic vehicle guidance[J]. Sensor Review, 2008, 28(2):132-135.
[27] 吴祥.基于电磁导航智能车的控制研究及实现[D].芜湖:安徽工程大学, 2016.
[28] Sadayuki T. A history of automated highway systems in Japan and future issues[C]//2008 IEEE International Conference on Vehicular Electronics and Safety. Columbus:IEEE, 2008:2-3.
[29] 徐海贵.基于磁阻传感器阵列的车辆自主导航系统研究[D].上海:上海交通大学, 2009.
[30] Tsugawa S, Aoki M, Hosaka A, et al. A survey of present IVHS activities in Japan[J]. Control Engineering Practice, 1997, 5(11):1591-1597.
[31] Tan H-S, Guldner J, Chen C, et al. Changing lanes on automated highways with look-down reference systems1[J]. IFAC Proceedings Volumes, 1998, 31(1):67-72.
[32] Guldner J, Patwardhan S, Tan H-S, et al. Coding of Road Information for Automated Highways[J]. ITS Journal-Intelligent Transportation Systems Journal, 1999, 4(3/4):187-207.
[33] Shladover S E, Desoer C A, Hedrick J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1):114-130.
[34] 吴超仲.基于磁道钉导航的车道保持系统信息融合与控制技术研究[D].武汉:武汉理工大学, 2002.
[35] 李斌,王春燕,吴涛,等.中国智能公路磁诱导技术研究进展[J].公路交通科技, 2004(11):66-69.
[36] 唐磊.磁诱导辅助驾驶系统在冬季除雪中的应用[J].公路, 2013, 58(11):221-224.
[37] Hopstock D M, Wald L D. Verification of field model for magnetic pavement marking tape[J]. IEEE Transactions on Magnetics, 1996, 32(5):5088-5090.
[38] Guldner J, Tan H-S, Patwardhan S. Analysis of automatic steering control for highway vehicles with look-down lateral reference systems[J]. Vehicle System Dynamics, 1996, 26(4):243-269.
[39] Tan H-S, Guldner J, Chen C, et al. Lane changing with look-down reference systems on automated highways[J]. Control Engineering Practice, 2000, 8(9):1033-1043.
[40] Houdal N, Ditchi T, Géron E, et al. RF infrastructure cooperative system for in lane vehicle localization[J]. Electronics, 2014, 3(4):598-608.
[41] Lv Z Y, Ren F Y, Zhang S S, et al. Sensing mechanism of magnetic asphalt road materials[C]//IEEE. Proceedings of 20185th International Conference on Information Science and Control Engineering (ICISCE). Zhengzhou:IEEE, 2018:983-986.
[42] Moreno-Navarro F, Iglesias G R, Rubio-Gámez M C. Encoded asphalt materials for the guidance of autonomous vehicles[J]. Automation in Construction, 2019, 99:109-113.
[43] 孙瑜,范平志.射频识别技术及其在室内定位中的应用[J].计算机应用, 2005(5):1205-1208.
[44] 郑坤.基于RFID的车辆定位系统设计及定位方法研究[D].长春:吉林大学, 2016.
[45] Baum M, Overmeyer L. Passive 13.56 MHz RFID transponders for vehicle navigation and lane guidance[C]//Proceedings of the 1st International EURASIP Workshop on RFID Technology. Piseataway:NJ IEEE, 2007:83-86.
[46] Walvekar S R, Burkholder R J. FEKOTM modeling study of passive UHF RFID tags embedded in pavement[C]//2018 International Applied Computational Electromagnetics Society Symposium (ACES). Denver:IEEE, 2018:1-2.
[47] Song X, Li X, Tang W, et al. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors[J]. Sensors, 2014, 14(12):23095-23118.
[48] Pochettino O, Kondapalli S H, Aono K, et al. Real-time infrastructure-to-vehicle communication using RF-triggered wireless sensors[C]//IEEE. Proceedings of 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). Dallas, TX:IEEE, 2019:556-559.
[49] Malekian R, Kavishe A F, Maharaj B T, et al. Smart vehicle navigation system using hidden markov model and RFID technology[J]. Wireless Personal Communications, 2016, 90(4):1717-1742.
[50] Guerrero-Ibáñez J, Zeadally S, Contreras-Castillo J. Sensor technologies for intelligent transportation systems[J]. Sensors, 2018, 18(4):1-24.
[51] Oyekanlu E A, Smith A C, Thomas W P, et al. A review of recent advances in automated guided vehicle technologies:Integration challenges and research areas for 5Gbased smart manufacturing applications[J]. IEEE Access, 2020, 8:202312-202353.
[52] Lu S, Xu C, Zhong R Y, et al. A RFID-enabled positioning system in automated guided vehicle for smart factories[J]. Journal of Manufacturing Systems, 2017, 44:179-190.
[53] 刘林.微缩自主车横向控制及纵向速度自适应控制[D].长春:吉林大学, 2017.
[54] Liang X, Guler S I, Gayah V V. Joint optimization of signal phasing and timing and vehicle speed guidance in a connected and autonomous vehicle environment[J]. Transportation Research Record, 2019, 2673(4):70-83.
[55] Talebpour A, Mahmassani H S, Hamdar S H. Speed harmonization:Evaluation of effectiveness under congested conditions[J]. Transportation Research Record, 2013, 2391(1):69-79.
[56] Wang Linbing,王含笑,赵千,等.智能路面发展与展望[J].中国公路学报, 2019, 32(4):50-72.
[57] Galanis I, Anagnostopoulos I, Gurunathan P, et al. Environmental-based speed recommendation for future smart cars[J]. Future Internet, 2019, 11(3):78-95.
[58] 向新胜.车路协同在智慧交通中的应用分析[J].道路交通管理, 2017(8):39.
[59] Tabatabai H, Aljuboori M. A novel concrete-based sensor for detection of ice and water on roads and bridges[J]. Sensors, 2017, 17(12):2912.
[60] 陆凯旋.基于智能道钉的路面冰雪及水体检测技术[D].哈尔滨:哈尔滨工业大学, 2020.
[61] 桂康.路面气象状态识别关键技术研究[D].武汉:华中科技大学, 2019.
[62] Kyriakidis M, Happee R, de Winter J C F. Public opinion on automated driving:Results of an international questionnaire among 5000 respondents[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2015, 32:127-140.
[63] Fagnant D J, Kockelman K. Preparing a nation for autonomous vehicles:Opportunities, barriers and policy recommendations[J]. Transportation Research Part A:Policy and Practice, 2015, 77:167-181.
[64] Ma J, Li X, Shladover S, et al. Freeway speed harmonization[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1):78-89.
[65] Shi Z-Q, Chung D D L. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion[J]. Cement and Concrete Research, 1999, 29(3):435-439.
[66] 韦文兵.基于碳纤维混凝土(粗骨料)压敏性的交通测速系统研究[D].汕头:汕头大学, 2003.
[67] Han B, Zhang K, Yu X, et al. Nickel particle-based self-sensing pavement for vehicle detection[J]. Measurement, 2011, 44(9):1645-1650.
[68] Han B, Zhang K, Burnham T, et al. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection[J]. Smart Materials and Structures, 2012, 22(1):15020.
[69] 龚学进.碳纤维复合材料在交通越线违规检测中的实验研究[D].武汉:武汉理工大学, 2010.
[70] Monteiro A O, Loredo A, Costa P M F J, et al. A pressure-sensitive carbon black cement composite for traffic monitoring[J]. Construction and Building Materials, 2017, 154:1079-1086.
[71] Xiao J, Zou X, Xu W. EPave:A self-powered wireless sensor for smart and autonomous pavement[J]. Sensors, 2017, 17(10):2207.
[72] 邹祥.基于压电效应的沥青路面自供电无线传感系统设计与研究[D].西安:长安大学, 2018.
[73] 翟英博.基于温差发电的道路监测传感器节点研究与设计[D].西安:长安大学, 2019.
[74] Rhimi M, Lajnef N, Chatti K. A self-powered sensing system for continuous fatigue monitoring of in-service pavements[J]. International Journal of Pavement Research and Technology, 2012(5):303-310.
[75] Guo S, Wang F, Yang Y, et al. Energy-efficient cooperative for simultaneous wireless information and power transfer in clustered wireless sensor networks[J]. IEEE Transactions on Communications, 2015, 63(11):4405-4417.
[76] Mallick R B, Chen B-L, Bhowmick S. Harvesting energy from asphalt pavements and reducing the heat island effect[J]. International Journal of Sustainable Engineering, 2009, 2(3):214-228.
[77] Hasni H, Alavi A H, Chatti K, et al. A Self-powered surface sensing approach for detection of bottom-up cracking in asphalt concrete pavements:Theoretical/numerical modeling[J]. Construction and Building Materials, 2017, 144:728-746.
[78] Cho J Y, Kim K-B, Hwang W S, et al. A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system[J]. Applied Energy, 2019, 242:294-301.
[79] 耿洪杨.应用于自供电路面监测的集成温度传感器研究与设计[D].西安:长安大学, 2019.
[80] Cook-Chennault K A, Thambi N, Bitetto M A, et al. Piezoelectric energy harvesting:A green and clean alternative for sustained power production[J]. Bulletin of Science, Technology&Society, 2008(6):496-509.
[81] Abbasi A. Application of piezoelectric materials and piezoelectric network for smart roads[J]. International Journal of Electrical and Computer Engineering, 2013(6):857-862.
[82] Moure A, Izquierdo Rodríguez M A, Rueda S H, et al. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting[J]. Energy Conversion and Management, 2016, 112:246-253.
[83] Hou Y, Wang L, Wang D, et al. A preliminary study on the IoT-based pavement monitoring platform based on the piezoelectric-cantilever-beam powered sensor[J]. Advances in Materials Science and Engineering, 2017, 2017:1-6.
[84] Manosalvas-Paredes M, Lajnef N, Chatti K, et al. Data compression approach for long-term monitoring of pavement structures[J]. Infrastructures, 2020, 5(1):1-12.
[85] Ji X, Hou Y, Chen Y, et al. Fabrication and performance of a self-powered damage-detection aggregate for asphalt pavement[J]. Materials&Design, 2019, 179:107890.
[86] Homami H R. On chip micro power self generator for smart pavement material application[D]. State of New York:City University of New York, 2013.
[87] Chen T D, Kockelman K M, Hanna J P. Operations of a shared, autonomous, electric vehicle fleet:Implications of vehicle&charging infrastructure decisions[J]. Transportation Research Part A:Policy and Practice, 2016, 94:243-254.
[88] Mohamed A A S, Meintz A, Zhu L. System design and optimization of in-route wireless charging infrastructure for shared automated electric vehicles[J]. IEEE Access, 2019, 7:79968-79979.
[89] Nguyen T, Xie M, Liu X, et al. Platooning of autonomous public transport vehicles:The influence of ride comfort on travel delay[J]. Sustainability, 2019, 11(19):5237.
[90] Yu J J Q, Lam A Y S. Autonomous vehicle logistic system:Joint routing and charging strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7):2175-2187.
[91] Ahmad A, Alam M S, Chabaan R. A comprehensive review of wireless charging technologies for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):38-63.
[92] 吴璪.电动汽车动态充电模式相邻导轨激磁电流同步策略[D].重庆:重庆大学, 2019.
[93] Li S, Liu Z, Zhao H, et al. Wireless power transfer by electric field resonance and its application in dynamic charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10):6602-6612.
[94] 李锐杰.磁耦合谐振式无线电能传输特性研究及优化[D].西安:西安科技大学, 2019.
[95] Amditis A, Karaseitanids G, Damousis I, et al. Dynamic wireless charging for more efficient FEVs:The fabric project concept[C]//IET. Proceedings of MedPower 2014. Athens:IET, 2014:1-6.
[96] 李峰,孙轩,朱兴一,等.路面材料磁化对无线电能传输的能量损失效应研究[J].中国公路学报, 2021, 34(3):71-79.
[97] Villa J, Sanz J, Peri J, et al. Victoria project:Static and dynamic wireless charging for electric buses[C]//IDTechEx. Proceedings of the Business Intelligence on Emerging Technologies IDTechEx Conference. Berlin:IDTechEx, 2016:27-28.
[98] Azad A N, Echols A, Kulyukin V A, et al. Analysis, optimization, and demonstration of a vehicular detection system intended for dynamic wireless charging applications[J]. IEEE Transactions on Transportation Electrification, 2019, 5(1):147-161.
[99] Chen F, Kringo, Nicoken. Towards new infrastructure materials for on-the-road charging[C]//2014 IEEE International Electric Vehicle Conference (IEVC). Florence:IEEE, 2014:1-5.
[100] Chen F, Taylor N, Balieu R, et al. Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road:Dielectric power loss due to pavement materials[J]. Construction and Building Materials, 2017, 147:9-16.
[101] 胡峥峥,刘国权,杨大峰,等.树脂基透波混凝土材料的研究[J].兵器材料科学与工程, 2012, 35(3):42-45.
[102] Choi S Y, Jeong S Y, Gu B W, et al. Ultraslim S-type power supply rails for roadway-powered electric vehicles[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6456-6468.
[103] Amirpour M, Kim S, Battley M P, et al. Coupled electromagnetic-thermal analysis of roadway inductive power transfer pads within a model pavement[J]. Applied Thermal Engineering, 2021, 189:116710.
[104] Barnes A N. Thermal modeling and analysis of roadway embedded wireless power transfer modules[D]. State of Utah:Utah State University, 2020.
[105] Varghese B J, Kamineni A, Roberts N, et al. Design considerations for 50 kW dynamic wireless charging with concrete-embedded Coils[C]//Proceedings of 2020 IEEE PELS Workshop on Emerging Technologies:Wireless Power Transfer (WoW). Seoul:IEEE, 2020:40-44.
[106] Chen F, Taylor N, Kringos N. Electrification of roads:Opportunities and challenges[J]. Applied Energy, 2015, 150:109-119.
[107] Ceravolo R, Miraglia G, Surace C, et al. A computational methodology for assessing the time-dependent structural performance of electric road infrastructures[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(9):701-716.
[108] Marmiroli B, Dotelli G, Spessa E. Life cycle assessment of an on-road dynamic charging infrastructure[J]. Applied Sciences, 2019, 9(15):3117.
[109] Nguyen M L, Hornych P, Perez S, et al. Development of inductive charging pavement for electric buses in urban areas[C]//ITS. Proceedings of 22nd ITS World Congress. Bordeaux:ITS, 2015:1-12.
[110] Beeldens A, Hauspie P, Perik H. Inductive charging through concrete roads:A belgian case study and application[C]//ERF. Proceedings of 1st European Road Infrastructure Congress. Leeds:ERF, 2016:1-10.
[111] Ceravolo R, Miraglia G, Surace C. Fatigue damage assessment of electric roads based on probabilistic load models[J]. Journal of Physics:Conference Series, 2017, 842:12037.
[112] Chabot A, Deep P. 2D multilayer solution for an electrified road with a built-in charging box[J]. Road Materials and Pavement Design, 2019, 20(Suppl2):S590-S603.
[113] Levenberg E. Estimating vehicle speed with embedded inertial sensors[J]. Transportation Research Part C:Emerging Technologies, 2014, 46:300-308.
[114] Xue W, Wang L, Wang D. A prototype integrated monitoring system for pavement and traffic based on an embedded sensing network[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1380-1390.
[115] 于华洋,马涛,王大为,等.中国路面工程学术研究综述·2020[J].中国公路学报, 2020, 33(10):1-66.
[116] Voskuilen J, Montfort J V, Naus R, et al. Rollpave, a prefabricated asphalt wearing course[EB/OL].[2021-07-10]. http://data.abacus.hr/h-a-d/radovi_s_kongresa/nagoya_japan_2010/90193.pdf.
[117] Strache S, Wunderlich R, Heinen S. Self-powered intelligent sensor node concept for monitoring of road and traffic conditions[J]. Sensors&Transducers, 2012, 14(2):93-110.
[118] Wang D, Schacht A, Chen X, et al. Innovative treatment to winter distresses using a prefabricated rollable pavement based on a textile-reinforced concrete[J]. Journal of Performance of Constructed Facilities, 2016, 30(1):C4014008.
[119] Dong Y S, Hou Y, Cao D W, et al. Study on road performance of prefabricated rollable asphalt mixture[J]. Road materials and Pavement Design, 2017, 18(Suppl 3):65-75.
[120] Dong Y S, Hou Y, Wang Z F, et al. Self-healing performance of rollable asphalt mixture[J]. Journal of Materials in Civil Engineering, 2019, 31(7):4019117.
[121] Yang J, Zhu X, Li L, et al. Prefabricated flexible conductive composite overlay for active deicing and snow melting[J]. Journal of Materials in Civil Engineering, 2018, 30(11):4018283.
[122] 代书凝.可卷曲式预制降噪路面的性能研究[D].乌鲁木齐:新疆大学, 2019.
[123] 代书凝,呙润华,高晓通,等.玄武岩纤维掺量对可卷曲沥青路面路用性能的影响研究[J].新型建筑材料, 2019, 46(4):137-139.
[124] Vaitkus A, Andriejauskas T, Šernas O, et al. Definition of concrete and composite precast concrete pavements texture[J]. Transport (Vilnius, Lithuania), 2019, 34(3):404-414.
[125] Cardno C A. "Touch Screens" for roadways:Colorado tests smart pavement[J]. Civil Engineering Magazine, 2019, 89(1):36-37.
[126] Shekhar A, Kumaravel V K, Klerks S, et al. Harvesting roadway solar energy-performance of the installed infrastructure integrated PV bike path[J]. IEEE Journal of Photovoltaics, 2018, 8(4):1066-1073.
[127] Dinh N. Precast ultra-thin whitetopping (PUTW) in Singapore and its application for electrified roadways[D]. Free State of Bavaria:Technische Universitaet Muenchen, 2016.
[128] Hornych P, Nguyen M L, Kerzreho J P, et al. Full scale test on prefabricated slabs for electrical supply by induction of urban transport systems[C]//Proceedings of Transport Research Arena. Paris:TRA, 2014:1-10.
[129] Chong H Y, Lopez R, Wang J, et al. Comparative analysis on the adoption and use of BIM in road infrastructure projects[J]. Journal of Management in Engineering, 2016, 32(6):5016021.
[130] Mirboland M, Smarsly K. BIM-based description of intelligent transportation systems for roads[J]. Infrastructures (Basel), 2021, 6(4):51.
[131] Tang F, Ma T, Guan Y, et al. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS[J]. Automation in Construction, 2020, 111:103066.
[132] Smarsly K, Mirboland M. BIM-based simulation of intelligent transportation systems[C]//Proceedings of the 2020 European Navigation Conference (ENC). Dresden:IEEE, 2020:1-10.
[133] Costin A, Adibfar A, Hu H, et al. Building information modeling (BIM) for transportation infrastructure-literature review, applications, challenges, and recommendations[J]. Automation in Construction, 2018, 94:257-281.
[134] Ma C, Wang Y, Xu H. Research on prefabricated structure design method based on BIM technology[J]. IOP Conference Series:Materials Science and Engineering, 2020, 750:012195.
[135] 王建伟,高超,董是,等.道路基础设施数字化研究进展与展望[J].中国公路学报, 2020, 33(11):101-124.
[136] Tang F, Ma T, Zhang J, et al. Integrating three-dimensional road design and pavement structure analysis based on BIM[J]. Automation in Construction, 2020, 113:103152.
[137] Jackson R J, Wojcik A, Miodownik M. 3D Printing of asphalt and its effect on mechanical properties[J]. Materials&Design, 2018, 160:468-474.
[138] Jackson R J, Patrick P S, Miodownik M. Functionally graded 3D printed asphalt composites[J]. Materials Letters:X, 2020, 7:100047.
[139] Yeon J, Kang J, Yan W. Spall damage repair using 3D printing technology[J]. Automation in Construction, 2018, 89:266-274.
[140] 张守祺,昂源,李苗,等. 3D打印对装配式混凝土路面板可循环性的影响研究[J].硅酸盐通报, 2020, 39(8):2433-2440.
[141] 李结义,何凡,石红磊,等. 3D打印技术在路面修复工程的应用探讨[J].公路, 2019, 64(4):51-55.
[142] Safayet A J. Designing and testing 3-D printed Waferbox with embedded PZT sensors to identify the shape effect on energy harvesting[D]. Georgia:Georgia Southern University, 2018.
[143] Johnson C. Readiness of the road network for connected and autonomous vehicles[R]. London:RAC Foundation, 2017.
[144] Alawadhi M, Almazrouie J, Kamil M, et al. A systematic literature review of the factors influencing the adoption of autonomous driving[J]. International Journal of System Assurance Engineering and Management, 2020, 11(6):1065-1082.
[145] Rillings J H. Automated highways[J]. Scientific American, 1997, 277(4):80-85.
[146] Cheon. An overview of automated highway systems (AHS) and the social and institutional challenges they face[EB/OL].[2021-07-10]. http://scholarship.org/uc/item/8j86h0c.
[147] Hill B T. Smart Highways:Challenges facing dot's intelligent vehicle highway systems program. Testimony[R]. Washington:U. S. General Accounting Office, 1994.
[148] Muller S. Driverless:Intelligent cars and the road ahead[Z]. Berghahn Books, Inc. 2017:136
[149] Shladover S E. Why we should develop a truly automated highway system[J]. Transportation Research Record, 1998, 1651(1):66-73.
文章导航

/