专稿

中国海洋深水油气工程技术与装备创新需求预见及风险分析

  • 高德利 ,
  • 张广瑞 ,
  • 王宴滨
展开
  • 中国石油大学(北京)石油工程教育部重点实验室, 北京 102249
高德利,中国科学院院士,教授,研究方向为油气井力学与控制工程、复杂井工程理论与关键技术,电子信箱:gaodeli@cup.edu.cn

收稿日期: 2022-05-07

  修回日期: 2022-06-07

  网络出版日期: 2022-09-02

基金资助

中国科学院学部重大咨询项目(2019-ZW11-Z-035)

Innovation demand foresight and risk analysis of technologies and equipment for deepwater oil & gas engineering in China

  • GAO Deli ,
  • ZHANG Guangrui ,
  • WANG Yanbin
Expand
  • MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

Received date: 2022-05-07

  Revised date: 2022-06-07

  Online published: 2022-09-02

摘要

着眼于中国南海油气工程技术与装备创新发展问题,通过专家咨询调研,梳理了深水油气工程技术与装备发展现状,并将其分成深水油气勘探技术与装备、深水油气田高效开发工程模式、深水钻完井关键技术与装备、深水油气生产与输送关键技术与装备4个领域,构建了相应的4级层次评价模型,运用德尔菲法和权值因子判断法对深水油气工程技术与装备进行了量化分析和重要性排序,并对相应的关键装备系统进行了风险分析。研究结果表明,在深水油气工程中比较重要的技术与装备内容包括:深水油气勘探技术、油气田开发先进井型技术、浮式钻井平台/钻井船总体结构设计制造技术、深水钻井隔水管安装与作业控制技术、水下井口系统设计制造技术及其安全高效安装技术、深水钻完井安全高效作业技术、浮式生产平台总体结构设计制造技术、水下采油树系统设计制造技术及其安全控制技术以及电液复合式控制系统设计制造技术等;深水油气工程装备组成复杂,海洋环境和作业工况恶劣,导致泥浆循环、深水钻井隔水管、水下井口与采油树、油气处理、水下管汇及水下生产控制等系统出现失效的风险较高,可通过优化设计控制降低装备失效概率。

本文引用格式

高德利 , 张广瑞 , 王宴滨 . 中国海洋深水油气工程技术与装备创新需求预见及风险分析[J]. 科技导报, 2022 , 40(13) : 6 -16 . DOI: 10.3981/j.issn.1000-7857.2022.13.001

Abstract

Key demand and risk analysis of deepwater oil and gas engineering technology and equipment in the South China Sea can help construct our country's deepwater oil and gas engineering independent innovation system. Through reviewing the current status of deepwater oil and gas engineering technology and equipment, this paper divides the technologies into four major fields: exploration, modes, drilling and completion, and production and transportation, and presents a four-level hierarchical evaluation model for deepwater oil and gas engineering. By means of Delphi expert investigation method and the weight factor judgment method. the technologies and equipment are quantitatively analyzed and their importances are ranked, and a risk analysis of the key equipment system is given. The results show that deepwater oil and gas exploration technology, advanced well type technology for efficient oil and gas development, semi-submersible drilling platform/drillship structure design and manufacturing technology, and so on are relatively important, and that the complex composition of deepwater oil and gas engineering equipment system and the harsh operating environment may lead to the high risk of drilling mud circulation system, riser system, subsea wellhead and X-tree system, etc. So it is necessary to control and reduce the probability of equipment failure through optimized design to ensure a safe and efficient development of deepwater oil and gas.

参考文献

[1] 高德利, 王宴滨. 海洋深水钻井力学与控制技术若干研究进展[J]. 石油学报, 2019, 40(增刊2): 102-115.
[2] 高德利, 朱旺喜, 李军, 等. 深水油气工程科学问题与技术瓶颈——第147期双清论坛学术综述[J]. 中国基础科学, 2016, 18(3): 1-6.
[3] 李中. 中国海油深水钻井技术进展及发展展望[J]. 中国海上油气, 2021, 33(3): 114-120.
[4] 张强, 吕福亮, 贺晓苏, 等. 南海近5年油气勘探进展与启示[J]. 中国石油勘探, 2018, 23(1): 54-61.
[5] 王陆新, 潘继平, 杨丽丽. 全球深水油气勘探开发现状与前景展望[J]. 石油科技论坛, 2020, 39(2): 31-37.
[6] Coates J F. Boom time in forecasting[J]. Technology Forecasting and Social Change, 1999, 62(1/2): 37-40.
[7] Akaike S, Yokoo Y, Ito Y, et al. Close-up science and technology areas for the future[R]. Tokyo: National Institute of Science and Technology Policy, 2019.
[8] 曲钟阳. 基于德尔菲法的技术预见[D]. 大连: 大连理工大学, 2013.
[9] Zweck A, Holtmannspötter D, Braun M, et al. Stories from the future 2030 volume 3 of results from the search phase of BMBF Foresight Cycle II[R]. Germany: Department for Innovation Management and Consultancy, 2017.
[10] Willetts D, Haslett A, Egger D, et al. Technology and innovation futures: UK growth opportunities for the 2020s [R]. The United Kingdom: Foresight Horizon Scanning Centre, 2010.
[11] 中国工程科技2035发展战略研究项目组. 中国工程科技 2035发展战略·技术预见报告[M]. 北京: 科学出版社, 2019.
[12] 穆荣平, 陈勇, 高福, 等. 中国海洋领域2035技术预见[M]. 北京: 科学出版社, 2020: 93-100.
[13] UK Regulations. Offshore Installations (Safety Case) Regulations[M]. London: HMSO, 1992.
[14] Yager R R, Zadeh L A. An introduction to fuzzy logic applications in intelligent systems[M]. New York: Springer Science & Business Media, 1992: 1-20.
[15] Thomas L S. The analytic hierarchy process: Planning, priority setting, resource allocation[M]. New York: McGraw-Hill International Book Company, 1980.
[16] Ingvarson J, Storm O. Technical safety barrier management in statoilhydro[C]. Aberdeen: Offshore Europe Oil and Gas Conference and Exhibition, 2009: SPE 124289.
[17] Reason J. Human error: Models and management[J]. Western Journal of Medicine, 2000, 172(6): 393.
[18] Lavasani M, Yang Z, Finlay J, et al. Fuzzy risk assessment of oil and gas offshore wells[J]. Process Safety and Environmental Protection, 2011, 89(5): 277-294.
[19] Espen J S, Vinnem J E. Quantitative risk analysis of oil and gas drilling, using deepwater horizon as case study [J]. Reliability Engineering and System Safety, 2012, 100: 58-66.
[20] Wu S, Zhang L, Zheng W, et al. A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 139-158.
[21] Cheliyan A S, Bhattacharyya S K. Fuzzy fault tree analysis of oil and gas leakage in subsea production systems [J]. Journal of Ocean Engineering and Science, 2018(3): 38-48.
[22] Li X, Yang M, Chen G. An integrated framework for subsea pipelines safety analysis considering causation dependencies[J]. Ocean Engineering, 2019, 183: 175-186.
[23] Wang C, Liu Y, Hou W, et al. Reliability and availability modeling of subsea X-mas tree system using dynamic bayesian network with different maintenance methods[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104066.
[24] Bhardwaj U, Teixeira A P, Soares C G, et al. Evidence based risk analysis of fire and explosion accident scenarios in FPSOs[J]. Reliability Engineering & System Safety, 2021, 215: 107904.
[25] 程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30(7): 1225-1228.
[26] 杜向东. 中国海上地震勘探技术新进展[J]. 石油物探, 2018, 57(3): 321-331.
[27] 刘杰鸣, 王世圣, 冯玮, 等. 深水油气开发工程模式及其在我国南海的适应性探讨[J]. 中国海上油气, 2006(6): 413-418.
[28] 高德利. 深海天然气及其水合物开发模式与钻采技术探讨[J]. 天然气工业, 2020, 40(8): 169-176.
[29] 高德利, 黄文君, 李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术, 2019, 47(3): 1-8.
[30] 金晓剑, 陈荣旗, 朱晓环. 南海深水陆坡区油气集输的重大挑战与技术创新-荔湾3-1深水气田及周边气田水下及水上集输工程关键技术[J]. 中国海上油气, 2018, 30(3): 157-163.
[31] 朱海山, 李达, 魏澈, 等. 南海陵水17-2深水气田开发工程方案研究[J]. 中国海上油气, 2018, 30(4): 170- 177.
[32] 王宴滨. 深水导管和隔水管安装过程力学行为研究[D]. 北京: 中国石油大学(北京), 2016.
[33] 孙传轩, 刘文霄, 李磊, 等. 1500 m级国产水下卧式采油树样机码头浅水试验[J]. 石油矿场机械, 2021, 50(3): 36-44.
[34] 韩云峰, 安维峥, 洪毅. 我国水下生产系统测试技术进展[J]. 中国造船, 2021, 62(1): 245-253.
[35] SINTEF Industrial Management. Offshore reliability data handbook[M]. Norsk: Oreda Participants, 2015.
[36] Alessandro B. Reliability engineering[M]. Heidelberger: Springer Nature, 2017: 169-310.
[37] Bijay B, George P, Renjith V R, et al. Application of dynamic risk analysis in offshore drilling processes[J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104326.
[38] 罗小芳, 孙宇, 白旭, 等. 基于动态故障树的半潜式钻井平台钻井系统失效风险分析[J]. 船舶工程, 2019, 41(3): 107-114.
[39] 房军, 王宴滨, 高德利. 应用纵横弯曲梁理论分析隔水管受力变形[J]. 石油矿场机械, 2014, 43(10): 21-24.
[40] 王宴滨, 高德利, 房军. 浮力块对深水钻井隔水管安装过程性能的影响[J]. 石油机械, 2015, 43(7): 47-50.
[41] 王宴滨, 高德利, 房军. 海洋钻井隔水管-钻井液横向耦合振动特性[J]. 石油钻采工艺, 2015, 37(1): 25-29.
[42] 高德利, 王宴滨. 深水钻井管柱力学与设计控制技术研究新进展[J]. 石油科学通报, 2016, 1(1): 61-80.
[43] Lundborg M E K. Human technical factors in FPSOShuttle tanker interactions and their influence on the collision risk during operations in the north sea[D]. Trondheim: Norwegian University of Science and Technology, 2014.
[44] Kang J, Geng X, Bai X, et al. Risk assessment of FPSO topside based on generalized stochastic petri net[J]. Ocean Engineering, 2021, 238: 109732.
[45] Christou M, Konstantinidou M. Safety of offshore oil and gas operations: Lessons from past accident analysis[M]. Luxembourg: Institute for Energy and Transport, 2013, 28-41.
[46] Bhardwaj U, Teixeira A P, Soares C G. Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty[J]. Reliability Engineering & System Safety, 2022, 218: 108143.
文章导航

/