从历史发展和运行表现2个角度,对比了中日两国的对撞机工程建设与运行情况。分析表明,建设相对更早的中国对撞机的参数受限于资金、技术等条件,其研究方向为能区较低的粲物理领域;有工程技术基础的日本在确立对撞机建设方向时更具针对性,瞄准了物理前景更为丰富的B物理领域。中日两国对撞机皆取得了重要的科学成果,日本在科研成果产出方面更为突出,国际合作程度更高;中国近年来的成果产出量提升明显,且在粲物理领域的研究方面保持了领先水平。
To compare the colliders between China and Japan from the perspectives of historical development and running performance and to learn the development experience of Japan and provide references for future technological layout, especially for large research infrastructure planning, this study discovers that the parameters of Chinese collider, which was constructed earlier, are limited by funding, technology, and other factors. Its research field is charm physics, whose energy range is lower than that of B physics. Whereas Japan, which has a foundation in engineering technology, targets at the B physics with richer physics prospects. Both colliders have obtained significant scientific achievements. Japan is more prominent in the research output and the degree of international cooperation is higher. The output of Chinese collider has increased significantly in recent years, and China keeps leading in the research of charm physics.
[1] 北京正负电子对撞机建成30周年[EB/OL]. (2018-10- 02). http://www.ihep.cas.cn/zt/bepc30/index_73390.html.
[2] Abe K, Abe R, Adachi I, et al. Observation of large CP violation in the neutral B meson system[J]. Physical Review Letters, 2001, 87(9): 091802.
[3] Brodzicka J, Browder T, Chang P, et al. Physics achievements from the KEKB experiment[J]. Progress of Theoretical and Experimental Physics, 2012, 2012(1): 04D001.
[4] 柳怀祖. 北京正负电子对撞机工程的回顾与思考[J]. 科学文化评论, 2019, 16(6): 32-45.
[5] 王晓义, 白欣. 北京正负电子对撞机方案的初步提出与确立[J]. 中国科技史杂志, 2011, 32(4): 472-487.
[6] 丁兆君, 胡化凯.“七下八上” 的中国高能加速器建设[J]. 科学文化评论, 2006(2): 85-104.
[7] List of accelerators in particle physics[EB/OL]. (2021-05- 14)[2021-08-20]. https://en.wikipedia.org/wiki/List_of_accelerators_in_particle_physics#Colliders.
[8] 王贻芳. 从BEPC到CEPC[EB/OL]. (2018-10-16) [2022- 02-01]. http://www.ihep.cas.cn/zt/bepc30/jnwz/zwxd/2018-10/t20181016_5142918.html.
[9] 肖振军, 吕才典. 粒子物理学导论[M]. 北京: 科学出版社, 2016.
[10] Campagnari C, Franklin M. The discovery of the top quark[J]. Reviews of Modern Physics, 1997, 69(1): 137.
[11] Kodama K, Ushida N, Andreopoulos C, et al. Observation of tau neutrino interactions[J]. Physics Letters B, 2001, 504(3): 218-224.
[12] Aad G, Abajyan T, Abbott B, et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[J]. Physics Letters B, 2012, 716(1): 1-29.
[13] Chatrchyan S, Khachatryan V, Sirunyan A M, et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[J]. Physics Letters B, 2012, 716(1): 30-61.
[14] 中国科学院高能物理研究所. 斯坦福直线加速器中心[EB/OL]. (2003-04-30) [2022-04-01]. http://www.ihep.cas.cn/kxcb/zmsys/200910/t20091030_2643482.html.
[15] 单斌, 李芳. 基于LDA话题演化研究方法综述[J]. 中文信息学报, 2010, 24(6): 43-49.
[16] 张瑾. 基于改进TF-IDF算法的情报关键词提取方法[J]. 情报杂志, 2014, 33(4): 153-155.
[17] 李航, 唐超兰, 杨贤, 等. 融合多特征的TextRank关键词抽取方法[J]. 情报杂志, 2017, 36(8): 183-187.
[18] 李华东, 张晶晶, 刘细文. 重大科技基础设施对学科领域发展影响的计量评价——以对撞机为例[J]. 科技管理研究, 2022, 42(8): 74-81.
[19] 黄光顺, 李海波, 吕晓睿. 北京谱仪实验物理成果[J]. 物理, 2020, 49(8): 499-512.
[20] Aushev T, Bartel W, Bondar A, et al. Physics at super B factory[J]. arXiv preprint arXiv: 1002.5012, 2010.
[21] Super KEKB and BelleII[EB/OL]. (2017-02-24) [2021-07-05]. https://www.belle2.org/project/super_kekb_and_belle_ii/.
[22] 黄涛. 理论物理室在BEPC建设中做出重要贡献[EB/ OL]. (2018-10-12) [2022-02-01]. http://www.ihep.cas.cn/zt/bepc30/jnwz/zwxd/201810/t20181012_5141729.html.