[1] National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease[M]. Washington (DC): National Academies Press (US), 2011.
[2] Collins F S, Varmus H. A new initiative on precision medicine[J]. The New England Journal of Medicine, 2015, 372(9): 793-795.
[3] Johnson J A, Thaul S, Bagalman E. H.R. 6: The 21st century cures act[R]. Washington DC: Congressional Research Service Reports, 2015.
[4] 龚兆龙, 林毅晖, 袁泰昌, 等. 精准医学时代的抗肿瘤药物研发[J]. 药学进展, 2017, 41(2): 97-100.
[5] Wakai T, Prasoon P, Hirose Y, et al. Next-generation sequencing-based clinical sequencing: toward precision medicine in solid tumors[J]. International Journal of Clinical Oncology, 2019, 24(2): 115-122.
[6] 刘昌孝. 精准药学: 从转化医学到精准医学探讨新药发展[J]. 药物评价研究, 2016, 39(1): 1-18.
[7] 丁健. 精准医疗时代的肿瘤药理学研究[J]. 药学进展, 2015, 39(10): 721-722.
[8] Alizadeh A A, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor heterogeneity[J]. Nature Medicine, 2015, 21(8): 846-853.
[9] Dagogo-Jack I, Shaw A T. Tumour heterogeneity and resistance to cancer therapies[J]. Nature Reviews Clinical Oncology, 2018, 15(2): 81-94.
[10] 涂超峰, 綦鹏, 李夏雨, 等. 肿瘤异质性: 精准医学需破解的难题[J]. 生物化学与生物物理进展, 2015, 42(10): 881-890.
[11] Dlamini Z, Francies F Z, Hull R, et al. Artificial intelligence (AI) and big data in cancer and precision oncology [J]. Computational and Structural Biotechnology Journal, 2020, 18: 2300-2311.
[12] 胡学达, 杨焕明, 赫捷, 等. 肿瘤基因组学与全球肿瘤基因组计划[J]. 科学通报, 2015, 60(9): 792-804.
[13] Bardakjian T, Gonzalez-Alegre P. Towards precision medicine[J]. Handbook of Clinical Neurology, 2018, 147: 93-102.
[14] Slamon D J, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2[J]. The New England Journal of Medicine, 2001, 344(11): 783-792.
[15] Druker B J, Guilhot F, O'Brien S G, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia[J]. The New England Journal of Medicine, 2006, 355(23): 2408-2417.
[16] Gridelli C, Rossi A, Carbone D P, et al. Non-small-cell lung cancer[J]. Nature Reviews Disease Primers, 2015, 1(1): 1-16.
[17] Ku B M, Sun J M, Lee S H, et al. An update on biomarkers for kinase inhibitor response in non-small-cell lung cancer[J]. Expert Review of Molecular Diagnostics, 2017, 17(10): 933-942.
[18] Lee T, Clarke J M, Jain D, et al. Precision treatment for metastatic non-small cell lung cancer: A conceptual overview[J]. Cleveland Clinic Journal of Medicine, 2021, 88(2): 117-127.
[19] Pakkala S, Ramalingam S S. Personalized therapy for lung cancer: Striking a moving target[J]. JCI Insight, 2018, 3(15): e120858.
[20] Yang S R, Schultheis A M, Yu H, et al. Precision medicine in non-small cell lung cancer: Current applications and future directions[J]. Seminars in Cancer Biology, 2020(Available online).
[21] Passiglia F, Malapelle U, Del Re M, et al. KRAS inhibition in non-small cell lung cancer: Past failures, new findings and upcoming challenges[J]. European Journal of Cancer, 2020, 137: 57-68.
[22] Skoulidis F, Li B T, Dy G K, et al. Sotorasib for lung cancers with KRAS p.G12C mutation[J]. The New England Journal of Medicine, 2021, 384(25): 2371-2381.
[23] 王建祥, 顾闰夏. 急性髓系白血病的靶向治疗进展[J]. 山东大学学报(医学版), 2019, 57(7): 6-12.
[24] DiNardo C, Lachowiez C. Acute myeloid leukemia: From mutation profiling to treatment decisions[J]. Current Hematologic Malignancy Reports, 2019, 14(5): 386-394.
[25] Stone R M, Mandrekar S J, Sanford B L, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. The New England Journal of Medicine, 2017, 377(5): 454-464.
[26] Gu R, Yang X, Wei H. Molecular landscape and targeted therapy of acute myeloid leukemia[J]. Biomarker Research, 2018, 6: 32.
[27] Cerchione C, Romano A, Daver N, et al. IDH1/IDH2 inhibition in acute myeloid leukemia[J]. Frontiers in Oncology, 2021, 11: 639387.
[28] Thol F, Heuser M. Treatment for relapsed/refractory acute myeloid leukemia[J]. Hemasphere, 2021, 5(6): e572.
[29] Garber K. Tissue-agnostic cancer drug pipeline grows, despite doubts[J]. Nature Reviews Drug Discovery, 2018, 17(4): 227-229.
[30] Dudley J C, Lin M T, Le D T, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clinical Cancer Research, 2016, 22(4): 813-820.
[31] Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site-when a biomarker defines the indication[J]. The New England Journal of Medicine, 2017,377(15): 1409-1412.
[32] Adashek J J, Subbiah V, Kurzrock R. From tissue-agnostic to n-of-one therapies: (R)Evolution of the precision paradigm[J]. Trends in Cancer, 2021, 7(1): 15-28.
[33] Drilon A, Laetsch T W, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. The New England Journal of Medicine, 2018, 378(8): 731-739.
[34] Drilon A, Siena S, Ou S I, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I Trials (ALKA-372-001 and STARTRK-1) [J]. Cancer Discovery, 2017, 7(4): 400-409.
[35] Pestana R C, Sen S, Hobbs B P, et al. Histology-agnostic drug development-considering issues beyond the tissue[J]. Nature Reviews Clinical Oncology, 2020, 17(9): 555-568.
[36] Seligson N D, Knepper T C, Ragg S, et al. Developing drugs for tissue-agnostic indications: A paradigm shift in leveraging cancer biology for precision medicine[J]. Clinical Pharmacology & Therapeutics, 2021, 109(2): 334-342.
[37] Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. The Lancet Oncology, 2020, 21(10): 1353-1365.
[38] Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy[J]. Nature Reviews Clinical Oncology, 2018, 15(12): 731-747.
[39] Murciano-Goroff Y R, Taylor B S, Hyman D M, et al. Toward a more precise future for oncology[J]. Cancer Cell, 2020, 37(4): 431-442.
[40] Wong C H, Siah K W, Lo A W. Estimation of clinical trial success rates and related parameters[J]. Biostatistics, 2019, 20(2): 273-286.
[41] US Food and Drug Administration. Master protocols: Efficient clinical trial design strategies to expedite development of oncology drugs and biologics[EB/OL]. (2018-10- 01) [2021-07-02]. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM621817.pdf.
[42] Woodcock J, LaVange L M. Master protocols to study multiple therapies, multiple diseases, or both[J]. The New England Journal of Medicine, 2017, 377(1): 62-70.
[43] Paz-Ares L, Barlesi F, Siena S, et al. Patient-reported outcomes from STARTRK-2: A global phase II basket study of entrectinib for ROS1 fusion-positive nonsmall-cell lung cancer and NTRK fusion-positive solid tumours[J]. ESMO Open, 2021, 6(3): 100113.
[44] Chen Y, Chi P. Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers[J]. Journal of Hematology & Oncology, 2018, 11(1): 78.
[45] 于亚南, 杜培艳, 刘骏, 等. 精准医学创新性临床试验设计“主方案” 研究的概念、 设计与案例[J]. 中国新药杂志, 2020, 29(23): 2712-2717.
[46] Cunanan K M, Gonen M, Shen R, et al. Basket Trials in oncology: A trade-off between complexity and efficiency [J]. Journal of Clinical Oncology, 2017, 35(3): 271-273.
[47] NCI-MATCH Sets "Benchmark of Actionability"[J]. Cancer Discovery, 2021, 11(1): 6-7.
[48] Murciano-Goroff Y R, Drilon A, Stadler Z K. The NCIMATCH: A national, collaborative precision oncology trial for diverse tumor histologies[J]. Cancer Cell, 2021, 39(1): 22-24.
[49] Flaherty K T, Gray R J, Chen A P, et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) [J]. Journal of Hematology & Oncology, 2020, 38(33): 3883-3894.
[50] Middleton G, Fletcher P, Popat S, et al. The national lung matrix trial of personalized therapy in lung cancer [J]. Nature, 2020, 583(7818): 807-812.
[51] Sakamoto K M, Kim K B, Kumagai A, et al. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation[J]. Proceedings of the National Academy of Sciences, 2001, 98(15): 8554-8559.
[52] Dale B, Cheng M, Park K S, et al. Advancing targeted protein degradation for cancer therapy[J]. Nature Reviews Cancer, 2021, 21(10): 638-654.
[53] Mullard A. Targeted protein degraders crowd into the clinic[J]. Nature Reviews Drug Discovery, 2021, 20(4): 247-250.
[54] 吕文兴, 贺明, 饶燏. 小分子靶向诱导蛋白降解技术的机遇及挑战[J]. 中国药物化学杂志, 2020, 30(12): 745- 764.
[55] Qi S M, Dong J, Xu Z Y, et al. PROTAC: An effective targeted protein degradation strategy for cancer therapy [J]. Frontiers in Pharmacology, 2021, 12: 692574.
[56] Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges[J]. European Journal of Medicinal Chemistry, 2021, 210: 112981.
[57] Zheng M, Huo J, Gu X, et al. Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP[J]. Journal of Medicinal Chemistry, 2021, 64(11): 7839-7852.