综述

肿瘤精准药物治疗研究进展

  • 黄瑶庆 ,
  • 王春丽 ,
  • 李子艳 ,
  • 毛艳艳 ,
  • 刘丽丽
展开
  • 中国科学院上海药物研究所信息中心, 上海 201203
黄瑶庆,馆员,研究方向为药物情报分析,电子信箱:yqhuang@simm.ac.cn

收稿日期: 2021-07-21

  修回日期: 2022-05-18

  网络出版日期: 2022-09-02

基金资助

上海市科委"科技创新行动计划"软科学基金项目(21692191100)

The research progress in precision cancer medicines

  • HUANG Yaoqing ,
  • WANG Chunli ,
  • LI Ziyan ,
  • MAO Yanyan ,
  • LIU Lili
Expand
  • Information Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Received date: 2021-07-21

  Revised date: 2022-05-18

  Online published: 2022-09-02

摘要

随着新一代基因测序技术以及癌生物学的迅猛发展,基于基因组生物标志物的抗肿瘤精准药物开发成为药物研发的重要方向。介绍了抗肿瘤精准药物在非小细胞肺癌、乳腺癌、黑色素瘤以及白血病等肿瘤领域表现出的优异治疗效果,剖析了目前已上市以及处于研发阶段的“泛癌种”药物,表明基于生物标志物而非肿瘤组织的治疗药物将成为抗肿瘤药物研发的方向之一。介绍了以“篮子试验”和“雨伞试验”为代表的抗肿瘤药物新型临床试验设计以及PROTACs药物开发新技术,指出新理念新技术的出现将进一步推动抗肿瘤精准药物发展,促进针对耐药或“不可成药靶点”的靶向药物的开发。

本文引用格式

黄瑶庆 , 王春丽 , 李子艳 , 毛艳艳 , 刘丽丽 . 肿瘤精准药物治疗研究进展[J]. 科技导报, 2022 , 40(13) : 86 -95 . DOI: 10.3981/j.issn.1000-7857.2022.

Abstract

With the rapid development of the next generation sequencing (NGS) technology and cancer biology, genomic biomarker-based personalized anti-cancer medicines have become an important direction of drug discovery. In this review, we first briefly introduce the excellent therapeutic effects of personalized anti-tumor medicines on non-small cell lung cancer, breast cancer, melanoma and leukemia. Next, we comprehensively explore current tumor agnostic anticancer medicines and highlight that therapeutic medicines based on biomarkers rather than tumor tissue will become one of the directions of antitumor drug discovery. Finally, after introducing the novel clinical trial design and the new technology of PROTACs, we argue that the emergence of new ideas and new technologies will promote the development of antitumor precision medicines and help solve the problem of drug-resistance and "undruggable" targets.

参考文献

[1] National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease[M]. Washington (DC): National Academies Press (US), 2011.
[2] Collins F S, Varmus H. A new initiative on precision medicine[J]. The New England Journal of Medicine, 2015, 372(9): 793-795.
[3] Johnson J A, Thaul S, Bagalman E. H.R. 6: The 21st century cures act[R]. Washington DC: Congressional Research Service Reports, 2015.
[4] 龚兆龙, 林毅晖, 袁泰昌, 等. 精准医学时代的抗肿瘤药物研发[J]. 药学进展, 2017, 41(2): 97-100.
[5] Wakai T, Prasoon P, Hirose Y, et al. Next-generation sequencing-based clinical sequencing: toward precision medicine in solid tumors[J]. International Journal of Clinical Oncology, 2019, 24(2): 115-122.
[6] 刘昌孝. 精准药学: 从转化医学到精准医学探讨新药发展[J]. 药物评价研究, 2016, 39(1): 1-18.
[7] 丁健. 精准医疗时代的肿瘤药理学研究[J]. 药学进展, 2015, 39(10): 721-722.
[8] Alizadeh A A, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor heterogeneity[J]. Nature Medicine, 2015, 21(8): 846-853.
[9] Dagogo-Jack I, Shaw A T. Tumour heterogeneity and resistance to cancer therapies[J]. Nature Reviews Clinical Oncology, 2018, 15(2): 81-94.
[10] 涂超峰, 綦鹏, 李夏雨, 等. 肿瘤异质性: 精准医学需破解的难题[J]. 生物化学与生物物理进展, 2015, 42(10): 881-890.
[11] Dlamini Z, Francies F Z, Hull R, et al. Artificial intelligence (AI) and big data in cancer and precision oncology [J]. Computational and Structural Biotechnology Journal, 2020, 18: 2300-2311.
[12] 胡学达, 杨焕明, 赫捷, 等. 肿瘤基因组学与全球肿瘤基因组计划[J]. 科学通报, 2015, 60(9): 792-804.
[13] Bardakjian T, Gonzalez-Alegre P. Towards precision medicine[J]. Handbook of Clinical Neurology, 2018, 147: 93-102.
[14] Slamon D J, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2[J]. The New England Journal of Medicine, 2001, 344(11): 783-792.
[15] Druker B J, Guilhot F, O'Brien S G, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia[J]. The New England Journal of Medicine, 2006, 355(23): 2408-2417.
[16] Gridelli C, Rossi A, Carbone D P, et al. Non-small-cell lung cancer[J]. Nature Reviews Disease Primers, 2015, 1(1): 1-16.
[17] Ku B M, Sun J M, Lee S H, et al. An update on biomarkers for kinase inhibitor response in non-small-cell lung cancer[J]. Expert Review of Molecular Diagnostics, 2017, 17(10): 933-942.
[18] Lee T, Clarke J M, Jain D, et al. Precision treatment for metastatic non-small cell lung cancer: A conceptual overview[J]. Cleveland Clinic Journal of Medicine, 2021, 88(2): 117-127.
[19] Pakkala S, Ramalingam S S. Personalized therapy for lung cancer: Striking a moving target[J]. JCI Insight, 2018, 3(15): e120858.
[20] Yang S R, Schultheis A M, Yu H, et al. Precision medicine in non-small cell lung cancer: Current applications and future directions[J]. Seminars in Cancer Biology, 2020(Available online).
[21] Passiglia F, Malapelle U, Del Re M, et al. KRAS inhibition in non-small cell lung cancer: Past failures, new findings and upcoming challenges[J]. European Journal of Cancer, 2020, 137: 57-68.
[22] Skoulidis F, Li B T, Dy G K, et al. Sotorasib for lung cancers with KRAS p.G12C mutation[J]. The New England Journal of Medicine, 2021, 384(25): 2371-2381.
[23] 王建祥, 顾闰夏. 急性髓系白血病的靶向治疗进展[J]. 山东大学学报(医学版), 2019, 57(7): 6-12.
[24] DiNardo C, Lachowiez C. Acute myeloid leukemia: From mutation profiling to treatment decisions[J]. Current Hematologic Malignancy Reports, 2019, 14(5): 386-394.
[25] Stone R M, Mandrekar S J, Sanford B L, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. The New England Journal of Medicine, 2017, 377(5): 454-464.
[26] Gu R, Yang X, Wei H. Molecular landscape and targeted therapy of acute myeloid leukemia[J]. Biomarker Research, 2018, 6: 32.
[27] Cerchione C, Romano A, Daver N, et al. IDH1/IDH2 inhibition in acute myeloid leukemia[J]. Frontiers in Oncology, 2021, 11: 639387.
[28] Thol F, Heuser M. Treatment for relapsed/refractory acute myeloid leukemia[J]. Hemasphere, 2021, 5(6): e572.
[29] Garber K. Tissue-agnostic cancer drug pipeline grows, despite doubts[J]. Nature Reviews Drug Discovery, 2018, 17(4): 227-229.
[30] Dudley J C, Lin M T, Le D T, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clinical Cancer Research, 2016, 22(4): 813-820.
[31] Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site-when a biomarker defines the indication[J]. The New England Journal of Medicine, 2017,377(15): 1409-1412.
[32] Adashek J J, Subbiah V, Kurzrock R. From tissue-agnostic to n-of-one therapies: (R)Evolution of the precision paradigm[J]. Trends in Cancer, 2021, 7(1): 15-28.
[33] Drilon A, Laetsch T W, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. The New England Journal of Medicine, 2018, 378(8): 731-739.
[34] Drilon A, Siena S, Ou S I, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I Trials (ALKA-372-001 and STARTRK-1) [J]. Cancer Discovery, 2017, 7(4): 400-409.
[35] Pestana R C, Sen S, Hobbs B P, et al. Histology-agnostic drug development-considering issues beyond the tissue[J]. Nature Reviews Clinical Oncology, 2020, 17(9): 555-568.
[36] Seligson N D, Knepper T C, Ragg S, et al. Developing drugs for tissue-agnostic indications: A paradigm shift in leveraging cancer biology for precision medicine[J]. Clinical Pharmacology & Therapeutics, 2021, 109(2): 334-342.
[37] Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. The Lancet Oncology, 2020, 21(10): 1353-1365.
[38] Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy[J]. Nature Reviews Clinical Oncology, 2018, 15(12): 731-747.
[39] Murciano-Goroff Y R, Taylor B S, Hyman D M, et al. Toward a more precise future for oncology[J]. Cancer Cell, 2020, 37(4): 431-442.
[40] Wong C H, Siah K W, Lo A W. Estimation of clinical trial success rates and related parameters[J]. Biostatistics, 2019, 20(2): 273-286.
[41] US Food and Drug Administration. Master protocols: Efficient clinical trial design strategies to expedite development of oncology drugs and biologics[EB/OL]. (2018-10- 01) [2021-07-02]. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM621817.pdf.
[42] Woodcock J, LaVange L M. Master protocols to study multiple therapies, multiple diseases, or both[J]. The New England Journal of Medicine, 2017, 377(1): 62-70.
[43] Paz-Ares L, Barlesi F, Siena S, et al. Patient-reported outcomes from STARTRK-2: A global phase II basket study of entrectinib for ROS1 fusion-positive nonsmall-cell lung cancer and NTRK fusion-positive solid tumours[J]. ESMO Open, 2021, 6(3): 100113.
[44] Chen Y, Chi P. Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers[J]. Journal of Hematology & Oncology, 2018, 11(1): 78.
[45] 于亚南, 杜培艳, 刘骏, 等. 精准医学创新性临床试验设计“主方案” 研究的概念、 设计与案例[J]. 中国新药杂志, 2020, 29(23): 2712-2717.
[46] Cunanan K M, Gonen M, Shen R, et al. Basket Trials in oncology: A trade-off between complexity and efficiency [J]. Journal of Clinical Oncology, 2017, 35(3): 271-273.
[47] NCI-MATCH Sets "Benchmark of Actionability"[J]. Cancer Discovery, 2021, 11(1): 6-7.
[48] Murciano-Goroff Y R, Drilon A, Stadler Z K. The NCIMATCH: A national, collaborative precision oncology trial for diverse tumor histologies[J]. Cancer Cell, 2021, 39(1): 22-24.
[49] Flaherty K T, Gray R J, Chen A P, et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) [J]. Journal of Hematology & Oncology, 2020, 38(33): 3883-3894.
[50] Middleton G, Fletcher P, Popat S, et al. The national lung matrix trial of personalized therapy in lung cancer [J]. Nature, 2020, 583(7818): 807-812.
[51] Sakamoto K M, Kim K B, Kumagai A, et al. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation[J]. Proceedings of the National Academy of Sciences, 2001, 98(15): 8554-8559.
[52] Dale B, Cheng M, Park K S, et al. Advancing targeted protein degradation for cancer therapy[J]. Nature Reviews Cancer, 2021, 21(10): 638-654.
[53] Mullard A. Targeted protein degraders crowd into the clinic[J]. Nature Reviews Drug Discovery, 2021, 20(4): 247-250.
[54] 吕文兴, 贺明, 饶燏. 小分子靶向诱导蛋白降解技术的机遇及挑战[J]. 中国药物化学杂志, 2020, 30(12): 745- 764.
[55] Qi S M, Dong J, Xu Z Y, et al. PROTAC: An effective targeted protein degradation strategy for cancer therapy [J]. Frontiers in Pharmacology, 2021, 12: 692574.
[56] Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges[J]. European Journal of Medicinal Chemistry, 2021, 210: 112981.
[57] Zheng M, Huo J, Gu X, et al. Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP[J]. Journal of Medicinal Chemistry, 2021, 64(11): 7839-7852.
文章导航

/