研究论文

GSI同化GPS可降水量对四川盆地不同类型降水模拟影响

  • 王成鑫 ,
  • 杨晓丹 ,
  • 师义成 ,
  • 茅家华 ,
  • 赵鲁强
展开
  • 1. 北京弘象科技有限公司, 北京 100195;
    2. 中国气象局公共气象服务中心, 北京 100081;
    3. 中国三峡建工集团有限公司, 成都 610041;
    4. 浙江水利水电学院, 杭州 310002
王成鑫,博士,研究方向为中小尺度动力学,电子信箱:13429670011@163.com

收稿日期: 2022-01-11

  修回日期: 2022-01-11

  网络出版日期: 2022-09-02

基金资助

国家重点研发计划项目(2018YFC1505503-1);国家自然科学基金青年基金项目(41905048);金沙江下游梯级水电站气象预报关键技术研究及系统建设项目(JG/20015B)

The impact of assimilation of GPS precipitable water vapor in GSI on the simulation of different precipitation types in Sichuan Basin

  • WANG Chengxin ,
  • YANG Xiaodan ,
  • SHI Yicheng ,
  • MAO Jiahua ,
  • ZHAO Luqiang
Expand
  • 1. Beijing Presky Technology Company Limited, Beijing 100195, China;
    2. Public Weather Service Center, China Meteorological Administration, Beijing 100081, China;
    3. China Three Gorges Construction Engineering Corporation, Chengdu 610041, China;
    4. Zhejiang University of Water Resources and Electric Power, Hangzhou 310002, China

Received date: 2022-01-11

  Revised date: 2022-01-11

  Online published: 2022-09-02

摘要

选取四川盆地金沙江下游对流性降水个例(记为CR_2013)和稳定性降水个例(记为SR_2015),利用格点统计插值分析系统(GSI)同化全球定位系统(GPS)大气可降水量(PWV)资料,并结合天气研究与预报模式(WRF)对2次不同类型降水过程的初始场和模拟降水进行同化效果对比分析。结果表明,降水发生前,四川盆地已有较多水汽积聚,水汽分布东多西少,2个降水个例的强降水中心分别位于南侧和北侧的GPS水汽梯度带上。同化GPSPWV资料在改善初始湿度场的同时对初始温度场和风场也有不同程度的改善。控制实验的降水大小和分布总体都与实况较相似,但存在局部模拟偏强的情况。同化GPS-PWV对降水模拟的改进作用明显:CR_2013模拟的强降水中心范围与实况更接近,而SR_2015则明显减弱了虚假降水中心的强度和范围。降水调整最显著的区域与实况降水中心一致,都在GPS水汽梯度带上。同化GPS-PWV能持续影响模拟的累积降水,对流性降水调整幅度要高于稳定性降水。

本文引用格式

王成鑫 , 杨晓丹 , 师义成 , 茅家华 , 赵鲁强 . GSI同化GPS可降水量对四川盆地不同类型降水模拟影响[J]. 科技导报, 2022 , 40(13) : 96 -106 . DOI: 10.3981/j.issn.1000-7857.2022.13.010

Abstract

In order to evaluate the impacts of assimilation of GPS (global position system)-PWV (precipitable water vapor) on the initial field and simulation of different precipitation types in Sichuan Basin, several control tests and assimilation experiments were performed using GSI (gridpoint statistical interpolation) and WRF (weather research and forecasting) model. Two cases, namely CR_2013 and SR_2015, representing the processes of convective precipitation and stable precipitation, respectively were analyzed. The results showed that a great amount of water vapor had accumulated in Sichuan Basin before the occurrence of rain, with the amount in the east being more than that in the west. The rainstorm centers of the two cases were located at the southern and northern gradient zones of GPS water vapor, respectively. The assimilation of GPS-PWV not only improved the humidity field but also ameliorated temperature and wind field to some extent. Although the locations and intensities of simulated precipitation in the control tests were generally similar to the observed precipitation, there was stronger simulated precipitation in small areas. The assimilation of GPS-PWV significantly improved the simulation of precipitation. The range of simulated rainstorm centers of CR_2013 was closer to the observation, while the simulation of SR_2015 significantly weakened the intensity and range of the fake rainstorm centers. The most significant adjustment was located at the gradient zones of GPS water vapor, which was consistent with the observed rainstorm center. The assimilation of GPS-PWV continuously influenced the simulated accumulated precipitation, and the adjustment range of convective precipitation was higher than that of stable precipitation.

参考文献

[1] 杨璐瑛, 刘畅, 杨成芳, 等. 不同天气系统影响下强降雨过程GPS可降水量变化特征对比[J]. 干旱气象, 2018, 36(3): 475-482.
[2] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research, 1992, 97(D14): 15787-15801.
[3] Rocken C, Ware R, Van Hove T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical Research Letters, 1993, 20(23): 2631-2634.
[4] Emardson T R, Elgered G, Johansson J M. Three months of continuous monitoring of atmospheric water vapor with a network of GPS receivers[J]. Journal of Geophysical Research, 1998, 103(D2): 1807-1820.
[5] Baker H C, Dodson A H, Penna N T, et al. Groundbased GPS water vapour estimation: Potential for meteorological forecasting[J]. Journal of Atmospheric and SolarTerrestrial Physics, 2001, 63(12): 1305-1314.
[6] Gradinarsky L P, Johansson J M, Bouma H R, et al. Climate monitoring using GPS[J]. Physics and Chemistry of the Earth, 2002, 27(4): 335-340.
[7] 楚艳丽, 郭英华, 张朝林, 等. 地基GPS水汽资料在北京 “7.10” 暴雨过程研究中的应用[J]. 气象, 2007, 33(12): 16-22.
[8] 李国翠, 李国平, 连志鸾, 等. 不同云系降水过程中GPS可降水量的特征——华北地区典型个例分析[J]. 高原气象, 2008, 27(5): 1066-1073.
[9] 郭洁, 李国平, 黄文诗, 等. 不同类型降雨过程中GPS可降水量的特征分析[J]. 水科学进展, 2009, 20(6): 763- 768.
[10] Chen J N, Li G P. Diurnal variations of ground-based GPS-PWV under different solar radiation intensity in the Chengdu Plain[J]. Journal of Geodynamics, 2013, 72: 81-85.
[11] Choy S, Wang C, Zhang K, et al. GPS sensing of precipitable water vapour during the March 2010 Melbourne storm[J]. Advances in Space Research, 2013, 52(9): 1688-1699.
[12] 石小龙, 尚伦宇, 尹远渊, 等. 大连地区GPS反演大气可降水量的变化特征[J]. 高原气象, 2014, 33(6): 1648- 1653.
[13] 周长艳, 唐信英, 邓彪. 一次四川特大暴雨灾害降水特征及水汽来源分析[J]. 高原气象, 2015, 34(6): 1636- 1647.
[14] 马思琪, 周顺武, 王烁, 等. 基于GPS资料分析西藏中东部夏季可降水量日变化特征[J]. 高原气象, 2016, 35(2): 318-328.
[15] 曹云昌, 方宗义, 李成才, 等. 利用GPS和云图资料监测北京地区中小尺度降水的研究[J]. 高原气象, 2005, 24(1): 91-96.
[16] 王留朋, 白征东, 过静, 等. 利用地基GPS-PWV序列和相对湿度RH序列研究暴雨过程[J]. 测绘科学, 2007, 32(3): 142-198.
[17] 陈娇娜, 李国平, 黄文诗,等. 华西秋雨天气过程中GPS遥感水汽总量演变特征[J]. 应用气象学报, 2009, 20(6): 753-760.
[18] 丁海燕, 李青春, 郑祚芳, 等. 利用北京GPS监测网分析夏季暴雨的水汽特征[J]. 应用气象学报, 2012, 23(1): 47-58.
[19] 张振东, 魏鸣, 王皓. 用GPS水汽监测资料分析一次强对流性降水过程[J]. 气象科学, 2013, 33(5): 492-499.
[20] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展[J]. 应用气象学报, 2015, 26(6): 641-657.
[21] Smith T L, Benjamin S G, Shwartz B E, et al. Using GPS-PWV in a 4-D data assimilation system[J]. Earth Plants Space, 2000, 52: 921-926.
[22] De Pondeca M, Zou X. A case study of the variational assimilation of GPS zenith delay observations into a mesoscale model[J]. Journal of Applied Meteorology, 2001, 40: 1559-1576.
[23] Barker D M, Huang W, Guo Y, et al. A three-dimensional variational data assimilation system for MM5: Implementation and initial results[J]. Monthly Weather Review, 2004, 132: 897-914.
[24] 万蓉, 郑国光. 地基GPS在暴雨预报中的应用进展[J]. 气象科学, 2008, 28(6): 697-702.
[25] 陈敏, 范水勇, 仲跻芹, 等. 全球定位系统的可降水量资料在北京地区快速更新循环系统中的同化试验[J]. 气象学报, 2010, 68(4): 450-463.
[26] 赵润华, 李跃春, 沈宏彬. GPS可降水量与掩星折射率资料同化对暴雨模拟的影响[J]. 高原山地气象研究, 2013, 33(2): 24-29.
[27] 张晶, 顾松山,楚志刚, 等. LAPS同化GPS/PWV资料在暴雨预报中的应用研究[J]. 气象, 2014, 40(1): 76-85.
[28] 李昊睿, 丁伟钰, 薛纪善, 等. 广东省GPS/PWV资料的质量控制及其对前汛期降水预报影响的初步研究[J]. 热带气象学报, 2014, 30(3): 455-462.
[29] 贝纯纯, 李昕, 王元, 等. GPS/PWV资料在梅雨锋暴雨个例中的同化试验[J]. 气象科学, 2016, 36(2): 149- 157.
[30] 何志新, 江杨, 张苏, 等. 同化GPS可降水量资料在安徽地区暴雨预报中的应用[J]. 气象与环境学报, 2017, 33(2): 18-27.
[31] Bevis M, Busingor S, Chiswell S, et al. GPS Meteorology: Mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386.
[32] Li M, Li W W, Shi C, et al. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach[J]. Advances in Space Research, 2015, 55(1): 150-162.
[33] Snoun H, Kanfoudi H, Bellakhal G, et al. Validation and sensitivity analysis of the WRF mesoscale model PBL schemes over Tunisia using dynamical downscaling approach[J]. Euro-Mediterranean Journal for Environmental Integration, 2019, 4(1): 1-10.
[34] Onwukwe C, Jackson P L. Meteorological downscaling with wrf model, version 4.0, and comparative evaluation of planetary boundary layer schemes over a complex coastal airshed[J]. Journal of Applied Meteorology and Climatology, 2020, 59(8): 1295-1319.
[35] He J, Loboda T V. Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method[J]. Environmental Research Letters, 2020, 15(11): 115009.
[36] Shenoy M, Raju P V S, Prasad J. Optimization of physical schemes in WRF model on cyclone simulations over Bay of Bengal using one-way ANOVA and Tukey's test [J]. Scientific Reports, 2021, 11(1): 1-9.
文章导航

/