[1] 冯浩, 熊兆钦.“双碳” 背景下新能源汽车产业机遇及发展战略思考[J]. 决策与信息, 2022(5): 68-76.
[2] 尹宗义. 绿色低碳背景下“双积分政策” 对新能源汽车行业的影响分析[J]. 汽车与新动力, 2022, 5(1): 11-15.
[3] 孔德轩, 朱劲波, 储备.“双碳” 目标下新能源调控智慧管理研究[J]. 数字化用户, 2021(35): 49-51.
[4] 张艳, 郑贺允, 葛力铭. 资源型城市可持续发展政策对碳排放的影响[J]. 财经研究, 2022, 48(1): 49-63.
[5] 潘苏楠, 李北伟, 聂洪光. 中国新能源汽车产业可持续发展综合评价及制约因素分析——基于创新生态系统视角[J]. 科技管理研究, 2019, 39(22): 41-47.
[6] 王文伟, 孙逢春. 全气候新能源汽车关键技术及展望[J]. 中国工程科学, 2019, 21(3): 47-55.
[7] -20℃能跑多远?最大规模新能源车冬测结果公布[EB/ OL]. (2021-12-16) [2022-06-28]. https://www.dongchedi.com/article/7042105838638514720.
[8] Lin C, Kong W F, Tian Y, et al. Heating lithium-ion batteries at low temperatures for onboard applications: Recent progress, challenges and prospects[J]. Automotive Innovation, 2022, 5(1): 3-17.
[9] Zhang J Y, Shao D, Jiang L Q, et al. Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112207.
[10] Tian Y, Lin C, Li H L, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries-A review on the in-situ methods[J]. Applied Energy, 2021, 300: 117386.
[11] Wang T Z, Wu X G, Xu S B, et al. Performance of plugin hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating[J]. Journal of Power Sources, 2018, 401: 245-254.
[12] Min H, Zhang Z, Sun W, et al. A thermal management system control strategy for electric vehicles under lowtemperature driving conditions considering battery lifetime[J]. Applied Thermal Engineering, 2020, 181: 115944.
[13] Huang Y, Tang Y, Yuan W, et al. Challenges and recent progress in thermal management with heat pipes for lithium-ion power batteries in electric vehicles[J]. Science China(Technological Sciences), 2021, 64(5): 919-956.
[14] Jin H Z, Han X F, Radjenovic P M, et al. Facile and effective positive temperature coefficient (PTC) layer for safer lithium-ion batteries[J]. Journal of Physical Chemistry C, 2021, 125(3): 1761-1766.
[15] Guo S S, Xiong R, Wang K, et al. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application[J]. Applied Energy, 2018, 219: 256-263.
[16] Shang Y L, Liu K L, Cui N X, et al. A sine-wave heating circuit for automotive battery self-heating at subzero temperatures[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3355-3365.
[17] Zhu C, Shang Y L, Lu F, et al. Core temperature estimation for self-heating automotive lithium-ion batteries in cold climates[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3366-3375.
[18] Shang Y L, Zhu C, Lu G P, et al. Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature operations[J]. Journal of Power Sources, 2020, 450: 227435.
[19] Li Y L, Gao X L, Qin Y D, et al. Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures[J]. iScience, 2021, 24(1): 101921.
[20] Wang C Y, Zhang G S, Ge S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.
[21] de Santiago J, Bernhoff H, Ekergard B, et. al. Electrical motor drivelines in commercial all-electric vehicles: A review[J]. IEEE Transactions on Vehicular Technology, 2012, 61(2): 475-484.
[22] Lin C, Zhao M J, Pan H, et. al. Blending gear shift strategy design and comparison study for a batter electric city bus with AMT[J]. Energy, 2019, 185: 1-14.
[23] Zhao M J, Shi J H, Lin C. Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus[J]. Applied Energy, 2019, 243: 21-34.
[24] Lin C, Yu X, Zhao M J, et. al. Collaborative control of novel uninterrupted propulsion system for all-climate electric vehicles[J]. Automotive Innovation, 2022, 5: 18- 28.
[25] Lin C, Yi J, Yu X, et. al. Gearshift control in engagement process of dual-motor coaxial propulsion system for electric bus[J]. IEEE Access, 2022, 10: 43351- 43366.
[26] Xu N, Kong Y, Yan J Y, et. al. Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy[J]. Energy, 2022, 251: 123825.
[27] Li W H, Cui H, Nemeth T, et. al. Cloud-based healthconscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning[J]. Applied Energy, 2021, 293: 116977.
[28] Yu X, Lin C, Zhao M J, et al. Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles[J]. Applied Energy, 2022, 321: 119395.
[29] Yu X, Lin C, Xie P, et. al. A novel real-time energy management strategy based on Monte Carlo Tree Search for coupled powertrain platform via vehicle-to-cloud connectivity[J]. Energy, 2022, 256: 124619.
[30] 张文超, 邹慧明, 韩欣欣, 等. 电动客车用余热回收型热泵的换热器优化及性能实验研究[J]. 制冷学报, 2022, 43(1): 91-99.
[31] Qin F, Liu H Z, Zou H M, et al. Experiment investigation and control strategies on two-phase refrigerant injection heat pump system for electric vehicle in start-up stage[J]. Journal of Thermal Science, 2021, 30(3): 828- 839.
[32] 蒋亚东. 电动汽车热泵空调系统现状及发展趋势[J]. 制冷, 2021, 40(3): 40-44.
[33] 王从飞, 曹锋, 李明佳, 等. 碳中和背景下新能源汽车热管理系统研究现状及发展趋势[J]. 科学通报, 2021, 66(32): 4112-4128.
[34] Xu J M, Zhang C Z, Wan Z M, et al. Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111908.