专题:推动绿色发展 建设美丽中国

核电厂周边土壤中放射性核素60Co的淋溶迁移分布

  • 张琼 ,
  • 陈鲁 ,
  • 王博 ,
  • 叶远虑
展开
  • 生态环境部核与辐射安全中心, 北京 100082
张琼,正高级工程师,研究方向为辐射防护与环境保护,电子信箱:zhangqiong@chinansc.cn

收稿日期: 2021-12-10

  修回日期: 2022-03-30

  网络出版日期: 2022-11-04

基金资助

大型先进压水堆及高温气冷堆核电站国家科技重大专项(2013ZX06002001)

Leaching and vertical transfer of radionuclide 60Co in soils around Nuclear Power Plant

  • ZHANG Qiong ,
  • CHEN Lu ,
  • WANG Bo ,
  • YE Yuanlv
Expand
  • Nuclear and Radiation Safety Center, MEE, Beijing 100082, China

Received date: 2021-12-10

  Revised date: 2022-03-30

  Online published: 2022-11-04

摘要

我国核电厂址目前主要以滨海厂址为主,周边土壤多为棕壤土和风砂土,关于核素137Cs和89Sr等核素在土壤中迁移分析较多,关于60Co在棕壤土和风砂土中的迁移报道较少。本研究采用原状土柱法及同位素示踪技术,采集我国三代核电“国和一号”石岛湾示范厂址周边的原状土柱,开展放射性核素60Co在棕壤土和风砂土中的淋溶垂直迁移实验,模拟核事故后放射性核素60Co在2种土壤中的垂直迁移,分析影响60Co垂直迁移的相关因素,预测核事故后60Co对地下水的影响。实验结果表明,随着淋溶实验的增加,风砂土中60Co迁移量比棕壤土中的大,但随着喷淋实验的进行差异渐趋减小;由于土壤对60Co的极强吸附,导致淋溶水检测不到60Co;经过为期3年的原状土柱实验,72.36%~85.26%的60Co主要滞留于土壤表层0~5 cm范围内,因此60Co短期内很难迁移到地下水中。土壤中60Co比活度与距离土壤表层深度分布呈单项指数规律。

本文引用格式

张琼 , 陈鲁 , 王博 , 叶远虑 . 核电厂周边土壤中放射性核素60Co的淋溶迁移分布[J]. 科技导报, 2022 , 40(19) : 106 -116 . DOI: 10.3981/j.issn.1000-7857.2022.19.011

Abstract

The soils surrounding coastal nuclear power plant are currently mainly brown soil and aeolian sandy soil in China . Previous research focused on the characteristics of 137Cs and 89Sr in different soils, and details of 60Co in brown soil and aeolian sandy soil are still inadequate. This study deals with an experiment to determine the vertical migration of 60Co in brown soil and aeolian sandy soil. The soils around Shidaowan Nuclear Power Plant are studied by using undisturbed soil column methods and isotope tracer technology to identify the factors influencing the migration depths in soil. The results show that with the increase of the number of leaching tests the migration of 60Co in aeolian sand soil is greater than that in brown soil, but the difference gradually decreases with the progress of spray test; that the content of 60Co in leaching water is very little and cannot be detected due to the strong adsorption by soil; and that after three years of undisturbed soil column experiment, 72.36~85.26% of 60Co mainly is retarded in the range of 0~5 cm in both soil surfaces. It is proved that 60Co is difficult to migrate to groundwater in a short period. The distribution of specific activity of 60Co in soil is an individual exponential declining with the depth of oil. The study provides technical support for post-accident environmental impact assessment and post-accident soil treatment in future.

参考文献

[1] Shinonaga T, Schimmack W, Gerzabek M H. Vertical migration of 60Co, 137Cs and 226Ra in agricultural soils as observed in lysimeters under crop rotation[J]. Environ. Radioact., 2005, 79: 93-106.
[2] 邵敏, 蔡志强, 赵希岳, 等. 放射性核素60Co在土壤中的中吸附和解吸的动力学研究[J]. 江苏工业学院学报, 2006, 18(3): 11-15.
[3] 刘媛媛, 魏强林, 高柏, 等. 放射性核素在不同介质中的迁移规律研究现状及进展[J]. 有色金属(冶炼部分) 2018, (6): 76-82.
[4] 马腾, 王焰新. 放射性核素在地下介质中迁移机理与模型研究[J]. 地质科学情报, 2000, 19(2): 78.
[5] 赵希岳, 樊国华, 蔡志强, 等. 放射性核素60Co在土壤中的 淋溶 和迁 移分 布[J]. 中国 环境 科学 , 2010, 30(8): 1118-1222.
[6] 曾文淇. 铀尾矿中放射性核素的迁移研究[J]. 江西化工, 2017(6): 42-45.
[7] Kagan M. L, Kadatsky B. V. Depth migration of Chernobyl originated Cs and Sr in soil of Belarus[J]. Environ. Radioact, 1996, 33(1): 27-19.
[8] Bondarkov M D, Zheltonozhsky V A, Zheltonozhskaya M V, et al. Vertical migration of radionuclides in the vicinity of the Chernobyl Confinement Shelter[J]. Health Phys, 2011, 101: 362-367.
[9] Koarashi J, Atarashi-Andoh M, Matsunaga T, et al. Factors affecting vertical distribution of Fukushima accidentderived radiocesium in soil under different land-use conditions[J]. SciTotal Environ, 2012(431): 392-401.
[10] Konoplev A, Golosov V, Wakiyama Y, et al. Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration[J]. Environ Radioact, 2018(186): 23-33.
[11] 李书绅, 王志明, 郭择德, 等. 核素在非饱和黄土中迁移研究[M]. 北京: 原子能出版社, 2003.
[12] 郭择德, 王志明, 李书绅, 等. 黄土包气带中放射性核素迁移的现场试验[J]. 辐射防护, 2000, 20(1): 21-31.
[13] 王志明, 安永峰. 85Sr在非饱和黄土中的迁移特征[J]. 原子能科学技术, 2004, 38(1): 29-34.
[14] 上海核工程研究设计院. 国核压水堆示范工程大型先进压水堆CAP1400环境影响报告书(选址阶段) [R]. 上海: 上海核工程研究设计院, 2013.
[15] Arapis G, Petrayev E, Shagalova E, et al. Effective migration velocity of 137Cs and 90Sr as a function of the type of soils in Belarus [J]. Environ. Radioact, 1997, 34: 171- 185.
[16] Jagercikova M, Cornu S, Le Bas C, et al. Vertical distributions of 137Cs in soils: A meta-analysis [J]. Journal of Soils and Sediments, 2015, 15(1): 81-95.
[17] 范拴喜. 土壤重金属污染与控制[M]. 北京: 中国环境科学出版社, 2011.
[18] Dane H J, Topp G C, Methods of soil analysis: Part 4 physical methods[M]. Madison, Wisconsin (USA): Soil Science Society of America, Inc., 2002.
[19] Chappell A. Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction[J]. Catena, 1998, 31: 271-281.
[20] 于寒青, 李勇, 张琼, 等. 土壤分层采样装置: ZL 201621345491.4[P]. 2016.
[21] 陈文静. 河北平原土壤矿物学特征及环境意义[D]. 石家庄: 河北地质大学, 2018.
[22] 叶正丰, 张俊民, 过兴度. 山东省棕壤和褐土的粘土矿物[J].山东大学学报(自然科学版), 1986(3): 118-126.
[23] 李书绅, 王志明, 王金生, 等. 60Co, 85Sr, 134Cs在非饱和黄土中迁移特征研究[J]. 环境科学学报, 2002, 22(5): 614-619.
[24] 徐建华, 赵昱龙, 杜良, 等. 典型放射性核素在某极低放填埋场特定场址的迁移预测[J]. 核化学与放射化学, 2015, 37(2): 105-109.
[25] Bossew P, Kirchner G, Modelling the vertical distribution of radionuclides in soil. Part 1: The convection-dispersion equation revisited[J]. Environ. Radioact, 2004, 73(2): 127-150.
[26] Konoplev A, Golosov V, Wakiyama Y, et al. Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration[J]. Environ. Radioact, 2017: 1-11.
[27] 梁洪祥, 姚献东. 环境因素对蛭石吸附重金属钴离子的影响及机理[J]. 化学试剂, 2013, 35(6): 551-554.
[28] Xu D, Shao D, Chen C, et al. Effect of PH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite[J]. Radiochimica Acta, 2006, 94(2): 97-102.
[29] Yang S, Li J, Shao D, et al. Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA[J]. Journal of Hazardous Materials, 2009, 166(1): 109-116.
[30] Tewari P H, Lee W. Adsorption of Co (II) at the oxidewater interface[J]. Journal of Colloid & Interface Science, 1975, 52(1): 77-88.
文章导航

/