专题:深部地热储层增产技

基于机器学习的地热采灌方案优化方法

  • 王佳铖 ,
  • 陈进帆 ,
  • 赵志宏 ,
  • 谭现锋
展开
  • 1. 清华大学土木工程系, 北京 100084;
    2. 山东省鲁南地质工程勘察院, 济宁 272100
王佳铖,博士研究生,研究方向为地下工程,电子信箱:wang-jc21@mails.tsinghua.edu.cn

收稿日期: 2022-08-31

  修回日期: 2022-09-30

  网络出版日期: 2022-11-15

基金资助

国家重点研发计划项目(2019YFB1504103)

Optimizing development parameters of geothermal energy using machine learning technique

  • WANG Jiacheng ,
  • CHEN Jinfan ,
  • ZHAO Zhihong ,
  • TAN Xianfeng
Expand
  • 1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. Shandong Lunan Geological Engineering Investigation Institute, Jining 272100, China

Received date: 2022-08-31

  Revised date: 2022-09-30

  Online published: 2022-11-15

摘要

为了解决基于数值模拟的优化方法,通常需要大量模拟计算的问题,在比较不同机器学习方法的预测性能后,建立了基于多层感知机的代理模型,以降低计算成本,然后将其与遗传算法相结合,提出了非均质地热储层中地热对井系统采灌方案优化方法。通过地热田对井系统的案例研究,证明了所开发的采灌方案优化方法的合理性和有效性。结果表明,基于代理模型的采灌方案优化方法能以更低的计算成本,准确地找到给定开采井位置时最优的回灌井位置、采灌量和尾水温度。

本文引用格式

王佳铖 , 陈进帆 , 赵志宏 , 谭现锋 . 基于机器学习的地热采灌方案优化方法[J]. 科技导报, 2022 , 40(20) : 93 -100 . DOI: 10.3981/j.issn.1000-7857.2022.20.011

Abstract

In order to solve the problem that the simulation-based optimization method usually requires a large number of simulations, in this paper, after comparing the prediction performance of different machine learning methods, a surrogate model based on MLP was developed to reduce the computational cost, which was then combined with genetic algorithm to develop an optimization method of development parameters for geothermal doublets in heterogeneous geothermal reservoirs. Through the case study of a doublet system, the reasonability and efficiency of the developed optimization method of development parameters were demonstrated. The results show that when given a certain position of production well, the surrogate model-based optimization method of development parameters can accurately find the optimal placement of injection well, the rate of production and injection, and the temperature of recharge water with lower computational cost.

参考文献

[1] 汪集暘, 庞忠和, 孔彦龙, 等.我国地热清洁取暖产业现状与展望[J].科技促进发展, 2020, 16(增刊1):294-298.
[2] 曹锐, 多吉, 李玉彬, 等.我国中深层地热资源赋存特征、发展现状及展望[J].工程科学学报, 2022, (优先发表)
[3] 王贵玲, 刘彦广, 朱喜, 等.中国地热资源现状及发展趋势[J].地学前缘, 2020, 27(1):1-9.
[4] 孔彦龙, 庞忠和, 邵亥冰, 等.面向成本的中深层地热储群井采灌优化布局研究[J].科技促进发展, 2020, 16(增刊1):316-322.
[6] O'Sullivan M J, Pruess K, Lippmann M J.State of the art of geothermal reservoir simulation[J].Geothermics, 2001, 30(4):395-429.
[7] Pandey S N, Vishal V, Chaudhuri A.Geothermal reservoir modeling in a coupled thermo-hydro-mechanicalchemical approach:A review[J].Earth-Science Reviews, 2018, 185:1157-1169.
[8] Liang X, Xu T F, Feng B, et al.Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs[J].Energy, 2018, 164:853-870.
[9] Guo L L, Zhang Y B, Wang Z C, et al.Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system:A case study in Guide Basin, Northwestern China[J].Renewable Energy, 2020, 153:813-831.
[10] Mahmoodpour S, Singh M, Turan A, et al.Simulations and global sensitivity analysis of the thermo-hydraulicmechanical processes in a fractured geothermal reservoir[J].Energy, 2022, 247:123511.
[11] Samin M Y, Faramarzi A, Jefferson I, et al.A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs[J].Renewable Energy, 2019, 134:379-389.
[12] Zhang S Y, Jiang Z J, Zhang S S, et al.Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China[J].Journal of Cleaner Production, 2021, 317:128391.
[13] Asai P, Panja P, Mclennan J, et al.Performance evaluation of enhanced geothermal system (EGS):Surrogate models, sensitivity study and ranking key parameters[J].Renewable Energy, 2018, 122:184-195.
[14] Chen M J, Tompson A F B, Mellors R J, et al.An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty[J].Applied Energy, 2015, 137:352-363.
[15] Okoroafor E R, Smith C M, Ochie K I, et al.Machine learning in subsurface geothermal energy:Two decades in review[J].Geothermics, 2022, 102:102401.
[16] Aydin H, Akin S, Senturk E.A proxy model for determining reservoir pressure and temperature for geothermal wells[J].Geothermics, 2020, 88:101916.
[17] Zhou L, Zhang Y J, Hu Z J, et al.Analysis of influencing factors of the production performance of an enhanced geothermal system (EGS) with numerical simulation and artificial neural network (ANN)[J].Energy and Buildings, 2019, 200:31-46.
[18] Jiang Z J, Zhang S Y, Turnadge C, et al.Combining autoencoder neural network and Bayesian inversion to estimate heterogeneous permeability distributions in enhanced geothermal reservoir:Model development and verification[J].Geothermics, 2021, 97:102262.
[19] Gudala M, Govindarajan S K.Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models[J].Geothermics, 2021, 96:102174.
[20] Wang J C, Zhao Z H, Liu G H, et al.A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm[J].Energy, 2022, 254:124427.
[21] 赵志宏, 刘桂宏, 徐浩然.深地能源工程热水力多场耦合效应高效模拟方法[J].工程力学, 2020, 37(6):1-18.
[22] Wang G L, Liu G H, Zhao Z H, et al.A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model[J].Renewable Energy, 2019, 139:873-894.
[23] Jazzbin J.Geatpy:The genetic and evolutionary algorithm toolbox with high performance in python[EB/OL].[2022-08-30].http://www.geatpy.com/.
文章导航

/