专题:初级矿产品供应安全战略

中国稀土铈元素的利用潜力——基于动态物质流方法

  • 张旭 ,
  • 张君华 ,
  • 汪鹏 ,
  • 王鹤鸣 ,
  • 王路 ,
  • 岳强 ,
  • 杜涛 ,
  • 陈伟强
展开
  • 1. 东北大学国家环境保护生态工业重点实验室, 沈阳 110819;
    2. 中国科学院城市环境研究所, 中国科学院城市环境与健康重点实验室, 厦门 361021;
    3. 中国科学院大学, 北京 100049;
    4. 中国科学院赣江创新研究院, 赣州 341000
张旭,硕士研究生,研究方向为物质流分析,电子信箱: ie.zhangxu@hotmail.com

收稿日期: 2022-06-03

  修回日期: 2022-08-21

  网络出版日期: 2022-11-30

基金资助

国家自然科学基金项目(52070034,41871204,71961147003,71904182);福建省科技计划对外合作项目(2020I0039)

Development and utilization of rare earth cerium in China based on material flow analysis

  • ZHANG Xu ,
  • ZHANG Junhua ,
  • WANG Peng ,
  • WANG Heming ,
  • WANG Lu ,
  • YUE Qiang ,
  • DU Tao ,
  • CHEN Weiqiang
Expand
  • 1. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China;
    2. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Ganjiang Innovation Research Institute, Chinese Academy of Sciences, Ganzhou 341000, China

Received date: 2022-06-03

  Revised date: 2022-08-21

  Online published: 2022-11-30

摘要

为了分析铈的全产业链情况,增加铈的附加值,建立了铈动态物质流分析框架,以1990—2018年为时间边界,以中国大陆为空间边界,模拟铈在各个环节(开采、冶炼、加工、制造、使用和废物管理)的流动情况,分析铈的贸易格局。研究表明:(1)1990—2018年,中国是铈最大的供应国,29年间向全球累计供应75万t,国内累计消费量仅为39万t,对外累计出口量为22万t,过剩量为14万t;(2)铈制品的应用涉及稀土应用的所有领域,其中催化剂和冶金添加剂是2个最大的应用产品,1990—2018年累计铈用量分别为12万、10万t;(3)2010年以来中国铈出口量总体减少,且产品形式逐渐由冶炼产品向加工产品过渡。建议中国继续增加铈在现有制品中的应用量,同时加大科研投入,不断开发铈的新应用领域,保证市场的稳定性。

本文引用格式

张旭 , 张君华 , 汪鹏 , 王鹤鸣 , 王路 , 岳强 , 杜涛 , 陈伟强 . 中国稀土铈元素的利用潜力——基于动态物质流方法[J]. 科技导报, 2022 , 40(21) : 44 -54 . DOI: 10.3981/j.issn.1000-7857.2022.21.005

Abstract

To understand the whole industry chain of cerium, expand its application field and increase its potential value, a dynamic material flow analysis (MFA) framework for cerium is established in this study. It takes 1990—2018 as the time boundary and the Chinese mainland as the spatial boundary. The cerium in each link is simulated and the trade pattern of cerium in China is analyzed. The results are the followings. 1) from 1990 to 2018, China was the largest supplier of cerium and the cumulative supply to the world was 750000 t; the cumulative domestic consumption was only 390000 t and the external cumulative export volume was 220000 t, there is a surptus of 140000 t. 2) the application of cerium products involved all kinds of rare earth products, of which catalysts and alloys were the two largest application sectors, and the cumulative consumption between 1990 and 2018 was 120, 000 and 96000 t, respectively. 3) since 2010 China's cerium export volume has generally decreased and the export form has gradually transitioned from smelted products to processed products, therefore, China should continue to increase investment in scientific research to develop new applications of cerium to ensure market stability continuously. The research results may provide a reference for sorting out the whole industrial chain of cerium, identifying the contradiction between supply and demand, and expanding the application field.

参考文献

[1] Watari T, Nansai K, Nakajima K. Review of critical metal dynamics to 2050 for 48 elements[J]. Resources, Conservation and Recycling, 2020, 155: 104669.
[2] Cheisson T, Schelter E J. Rare earth elements: Mendeleev's bane, modern marvels[J]. Science, 2019, 363(6426): 489-493.
[3] Graedel T E, Harper E M, Nassar N T, et al. On the materials basis of modern society[J]. Proceedings of the National Academy of Sciences, 2015, 112(20): 6295-6300.
[4] 陈润艳. 稀土污染与环境保护[J]. 金属功能材料, 2019, 26(5): 60-68.
[5] 袁赛赛. 二氧化铈光催化剂的合成改性及其机理研究[D]. 扬州: 扬州大学, 2018.
[6] Wisniak J. Jns Jacob Berzelius a guide to the perplexed chemistn[J]. The Chemical Educator, 2000, 5(6): 343-350.
[7] Montini T, Melchionna M, Monai M, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.
[8] Escudero-Escribano M, Malacrida P, Hansen M H, et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction[J]. Science, 2016, 352(6287): 73-76.
[9] Saatchi A, Arani A R, Moghanian A, et al. Cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing[J]. Ceramics International, 2021, 47(7): 9447-9461.
[10] Zou D, Li H, Deng Y, et al. Recovery of lanthanum and cerium from rare earth polishing powder wastes utilizing acid baking-water leaching-precipitation process[J]. Separation and Purification Technology, 2021, 261: 118244.
[11] Zhang R, Lin H, Yu Y, et al. A new-generation color converter for high-power white LED: Transparent Ce3+ : YAG phosphor-in-glass[J]. Laser & Photonics Reviews, 2014, 8(1): 158-164.
[12] 王超. 稀土掺杂Ba2ALa(PO4)3(A=Sr,Ca)发光材料的研究[D]. 北京: 北京工业大学, 2016.
[13] Tian F, Wu W, Jiang Z, et al. Adsorption of sulfur-containing compounds from FCC gasoline on cerium-exchanged Y zeolite[J]. Chinese Journal of Catalysis, 2005, 26(9): 734-736.
[14] Trovarelli A. Structural and oxygen storage/release properties of CeO 2-based solid solutions[J]. Comments on Inorganic Chemistry, 1999, 20: 263-284.
[15] 陈玮, 汪鹏, 赵燊, 等. 稀土元素物质流分析研究进展[J]. 科技导报, 2022, 40(8): 14-26.
[16] 郭咏梅, 杨丽, 张文灿. 稀土不稀重在创新应用[J]. 稀土信息, 2020(7): 10-18.
[17] 王敏晰, 马宇, 刘威, 等. 生态文明建设与资源循环利用耦合关系[J]. 资源科学, 2021, 43(3): 577-587.
[18] Brunner P H, Rechberger H. Practical handbook of material flow analysis[M]. Boca Raton: CRC Press LLC, 2004.
[19] Graedel T E. Material flow analysis from origin to evolution[J]. Environment Science Technoloy, 2019, 53(21): 12188-12196.
[20] Huang C, Vause J, Ma H, et al. Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook[J]. Resources, Conservation and Recycling, 2012, 68: 104-116.
[21] 王路, 王茜茜, 汪鹏, 等. 稀土工艺及产品生命周期评价分析: 技术框架及研究展望[J]. 稀土信息, 2021(12): 22-28.
[22] Wang P, Ryberg M, Yang Y, et al. Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts[J]. Nature Communications, 2021, 12(1): 1-11.
[23] Graedel T E, Van Beers D, Bertram M, et al. Multilevel cycle of anthropogenic copper[J]. Environmental Science & Technology, 2004, 38(4): 1242-1252.
[24] Chen W Q, Graedel T E. Dynamic analysis of aluminum stocks and flows in the United States: 1900—2009[J]. Ecological Economics, 2012, 81: 92-102.
[25] Chen W Q. Dynamic product-level analysis of in-use aluminum stocks in the United States[J]. Journal of Industrial Ecology, 2018, 22(6): 1425-1435.
[26] Chen W Q, Shi L. Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production[J]. Resources, Conservation and Recycling, 2012, 65: 18-28.
[27] 李新, 康欣宇, 林靖, 等. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545.
[28] 刘立涛, 赵慧兰, 刘晓洁, 等. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534.
[29] Chen W J, Wang Z H, Gong X Z, et al. Substance flow analysis of rare earth Lanthanum in China[C]//Materials Science Forum. Zürich: Trans Tech Publications Ltd., 2017, 898: 2455-2463.
[30] Nansai K, Nakajima K, Kagawa S, et al. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum[J]. Environmental Science & Technology, 2014, 48(3): 1391-1400.
[31] Chen W, Nie Z, Wang Z, et al. Substance flow analysis of neodymium based on the generalized entropy in China [J]. Resources, Conservation and Recycling, 2018, 133: 438-443.
[32] Geng J, Hao H, Sun X, et al. Static material flow analysis of neodymium in China[J]. Journal of Industrial Ecology, 2020, 25(1): 114-124.
[33] Wang Q, Wang P, Qiu Y, et al. Byproduct surplus: Lighting the depreciative europium in China's rare earth boom[J]. Environmental Science & Technology, 2020, 54(22): 14686-14693.
[34] Wang C, Zhao L, Lim M K, et al. Structure of the global plastic waste trade network and the impact of China's import Ban[J]. Resources Conservation and Recycling, 2019, 153: 104591.
[35] Fang M, Cao M, Li Y, et al. Material flow analysis on cement industry[J]. Advanced Materials Research, 2012, 512-515: 3042-3046.
[36] Du X, Graedel T E. Uncovering the global life cycles of the rare earth elements[J]. Scientific Reports, 2011, 1(1): 1-4.
[37] Du X, Graedel T E. Global in-use stocks of the rare earth elements: Afirst estimate[J]. Environmental Science & Technology, 2011, 45(9): 4096-4101.
[38] 谭敏, 冯海波, 李安华, 等. 晶界扩散铈磁体的组织结构与磁性能[J]. 中国稀土学报, 2019, 37(6): 655-660.
[39] 朱明刚, 张乐乐, 刘涛, 等. 一种高Ce含量双主相高磁能积磁体及其制备方法: CN113782290A[P]. 2021-12- 10.
[40] Du X, Graedel T E. Uncovering the end uses of the rare earth elements[J]. Science of the Total Environment, 2013, 461: 781-784.
[41] 李振民, 刘一力, 孙菊英, 等. 世界稀土需求趋势分析[J]. 稀土, 2017, 38(3): 149-158.
[42] 谢志进, 王文振, 李泽宇. 基于可靠性工程原理进行的节能灯寿命的模拟分析[J]. 计算机产品与流通, 2019(5): 121.
[43] 马小森, 韩福荣. 国产电脑品牌寿命分析[J]. 世界标准化与质量管理, 2007(8): 27-31.
[44] 王高玲, 汤少梁. 基于报废量预测的手机逆向物流的研究[J]. 科技管理研究, 2011, 31(18): 204-214.
[45] U. S. Geological Survey. National minerals information center: Ce balt statistics and information[EB/OL]. [2022- 10-20]. https://www.usgs.gov/centers/nmic/cobalt-statistics-and-information.
[46] 中国稀土行业协会. 2019年中国稀土行业协会工作报告[J]. 稀土信息, 2020(10): 10-18.
[47] 严方, 高文苗, 罗文平, 等. 原子吸收光谱法测定催化剂中的铈含量[J]. 化学分析计量, 2008(4): 52-53.
[48] 蒋小良, 陈琼, 兰丽丽, 等. ICP-AES法测定日用陶瓷浸出液中稀土元素[J]. 佛山陶瓷, 2017, 27(11): 32-34.
[49] 任旭东, 聂成宏, 王振江, 等. 熔融制样-X射线荧光光谱法测定稀土铝中间合金中稀土元素[J]. 冶金分析, 2020, 40(3): 62-67.
[50] United Nations Comtrade. International trade statistics database[DB/OL]. [2020-10-20]. https://comtrade.un.org.
[51] 易璐, 郑明贵. 中国稀土开采总量控制政策效应评估[J]. 有色金属科学与工程, 2021, 12(2): 120-126.
[52] Shen Y, Moomy R, Eggert R G. China's public policies toward rare earths, 1975—2018[J]. Mineral Economics, 2020, 33(1): 127-151.
[53] 姚玉玲, 代力, 舒荣波, 等. 赣南某未开发离子型稀土矿区土壤环境质量评价[J]. 矿产综合利用, 2022(4): 152-156, 161.
[54] Flytzani-Stephanopoulos M, Sakbodin M, Wang Z. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides[J]. Science, 2006, 312(5779): 1508-1510.
[55] Fu X Q, Wang C, Yu H C, et al. Fast humidity sensors based on CeO 2 nanowires[J]. Nanotechnology, 2007, 18(14): 145503.
[56] Gedam R S, Ramteke D D. Influence of CeO2 addition on the electrical and optical properties of lithium borate glasses[J]. Journal of Physics and Chemistry of Solids, 2013, 74(10): 1399-1402.
[57] 龚卫星, 李艳荣. 我国稀土废料回收利用技术与现状[J]. 中国资源综合利用, 2013, 31(9): 36-38.
[58] 刘贵清, 曲志平, 张磊. 从废催化剂中回收稀土的现状与展望[J]. 中国资源综合利用, 2014, 32(6): 27-29.
[59] Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts [J]. Angewandte Chemie, 2018, 130(6): 1632-1636.
[60] Zhou X, Guo S, Cai Q, et al. Ceria/cobalt borate hybrids as efficient electrocatalysts for water oxidation under neutral conditions[J]. Nanoscale Advances, 2019, 1(9): 3686-3692.
[61] Grewal S, Andrade A M, Liu Z, et al. Highly active bifunctional oxygen electrocatalytic sites realized in ceriafunctionalized graphene[J]. Advanced Sustainable Systems, 2020, 4(8): 2000048.
[62] 于雪. 基于铈基MOF古河光催化剂的制备及其光还原CO 2性能研究[D]. 南京: 南京信息工程大学, 2022.
[63] 高粱, 夏荣基. 稀土的农用原理及其对农业环境影响的研究[J]. 农业环境科学学报, 1988(4): 7-11, 22.
[64] 王皓, 姚青, 杨阳, 等. 纳米氧化铈在医药领域中的应用研究进展[J]. 中国现代应用药学, 2021, 38(17): 2170-2179.
[65] 宋建林. 稀土在医药上的应用[J]. 金属世界, 2001(2): 11.
[66] 邹伟欣, 于平平, 董林. 稀土铈基纳米材料在光催化消除环境污染物中的研究进展[J]. 环境化学, 2022, 41(8): 2505-2515.
[67] 魏媛媛. 基于稀土铈基纳米材料构筑的电化学传感器对重金属离子的检测研究[D]. 合肥: 安徽医科大学, 2022.
[68] 龚新超. 碳量子点/木材遗态结构氧化铈制备新型光催化材料的研究[D]. 哈尔滨: 东北林业大学, 2020.
[69] 谭勇军. 氧化铈基下转换发光材料的制备、 性能及机理研究[D]. 长沙: 湖南大学, 2019.
文章导航

/