[1] 林河成. 金属镨的生产及其应用发展[J]. 金属世界, 2007(2): 52-55.
[2] 中国的稀土状况与政策[EB/OL]. (2020-01-20)[2022- 05-16]. https://www.docin.com/p-2299035750.html.
[3] 周代数, 李小芬, 王胜光. 国际定价权视角下的中国稀土产业发展研究[J]. 工业技术经济, 2011, 30(2): 73-77.
[4] 宋文飞, 李国平, 韩先锋. 稀土定价权缺失、 理论机理及制度解释[J]. 中国工业经济, 2011(10): 46-55.
[5] 刘刚. 中国大宗商品定价权缺失问题探析: 以国际市场铁矿石与稀土定价为例[J]. 价格理论与实践, 2009(11): 25-26.
[6] 郭咏梅, 杨丽, 张文灿. 稀土不稀重在创新应用[J]. 稀土信息, 2020(7): 10-18.
[7] 白丽娜, 隋文力, 林忠. 白云鄂博矿在稀土和钢铁生产中放射性对周围环境的影响[J]. 稀土, 2004, 25(4): 75- 77.
[8] Du X, Graedel T E. Uncovering the global life cycles of the rare earth elements[J]. Scientific Reports, 2011, 1: 145.
[9] Du X, Graedel T E. Global in-use stocks of the rare Earth elements: A first estimate[J]. Environmental Science & Technology, 2011, 45(9): 4096-4101.
[10] Guyonnet D, Planchon M, Rollat A, et al. Material flow analysis applied to rare earth elements in Europe[J]. Journal of Cleaner Production, 2015, 107: 215-228.
[11] Du X, Graedel T E. Uncovering the end uses of the rare earth elements[J]. Science of the Total Environment, 2013, 461-462: 781-784.
[12] Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environmental Science & Technology, 2012, 46(6): 3406-3414.
[13] Li J, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions[J]. One Earth, 2020, 3(1): 116-125.
[14] Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 2019, 180: 903-917.
[15] Wang P, Li W, Kara S. Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages[J]. Journal of Cleaner Production, 2018, 174: 1492-1502.
[16] Elshkaki A. Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications[J]. Energy, 2020, 202: 117697.
[17] Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018—2030[J]. Resources, Conservation and Recycling, 2019, 145: 322-331.
[18] Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for US wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183: 1209-1226.
[19] Peiró L T, Méndez G V, Ayres R U. Material flow analysis of scarce metals: Sources, functions, end-uses and aspects for future supply[J]. 2013, 47(6): 2939-2947.
[20] Pavel C C, Lacal-Arántegui R, Marmier A, et al. Substitution strategies for reducing the use of rare earths in wind turbines[J]. Resources Policy, 2017, 52: 349-357.
[21] Yano J, Muroi T, Sakai S I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010—2030[J]. Journal of Material Cycles and Waste Management, 2016, 18(4): 655-664.
[22] Morf L S, Gloor R, Haag O, et al. Precious metals and rare earth elements in municipal solid waste-sources and fate in a Swiss incineration plant[J]. Waste Management, 2013, 33(3): 634-644.
[23] Schulze R, Buchert M. Estimates of global REE recycling potentials from NdFeB magnet material[J]. Resources, Conservation and Recycling, 2016, 113: 12-27.
[24] Sommer P, Rotter V S, Ueberschaar M. Battery related cobalt and REE flows in WEEE treatment[J]. Waste Management, 2015, 45: 298-305.
[25] Bi M, Liu W, Luan X, et al. Production, use, and fate of phthalic acid esters for polyvinyl chloride products in China[J]. Environmental Science & Technology, 2021, 55(20): 13980-13989.
[26] Graedel T E. Material flow analysis from origin to evolution[J]. Environmental Science & Technology, 2019, 53(21): 12188-12196.
[27] Liang C, Gracida-Alvarez U R, Gallant E T, et al. Material flows of polyurethane in the United States[J]. Environmental Science & Technology, 2021, 55(20): 14215- 14224.
[28] Zhang C, Liu B, Li N, et al. Resource nexus for sustainable development: Status quoand prospect[J]. Chinese Science Bulletin, 2021, 66(26): 3426-3440.
[29] Wang P, Ryberg M, Yang Y, et al. Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts[J]. Nature Communications, 2021, 12: 2066.
[30] Yue Q, Wang H M, Lu Z W. Quantitative estimation of social stock for metals Al and Cu in China[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1744-1752.
[31] Wang P, Wang H M, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022, 2(3): 392-395.
[32] 王俊博, 范蕾, 李新, 等. 基于物质流方法的中国铜资源社会存量研究[J]. 资源科学, 2016, 38(5): 939-947.
[33] Chen W Q, Graedel T E. Dynamic analysis of aluminum stocks and flows in the United States: 1900-2009[J]. Ecological Economics, 2012, 8192-102.
[34] 岳强, 王鹤鸣, 陆钟武. 中国2003年至2007年铝循环分析[J]. 资源科学, 2010, 32(3): 472-477.
[35] 刘立涛, 沈镭. 中国区域能源效率时空演进格局及其影响因素分析[J]. 自然资源学报, 2010, 25(12): 2142- 2153.
[36] Wang H M, Schandl H, Wang X Z, et al. Measuring progress of China's circular economy[J]. Resources, Conservation and Recycling, 2020, 163: 105070.
[37] Wang Q C, Wang P, Qiu Y, et al. Byproduct surplus: Lighting the depreciative europium in China's rare earth boom[J]. Environmental Science & Technology, 2020, 54(22): 14686-14693.
[38] Habib K, Schibye P K, Vestbø A P, et al. Material flow analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach[J]. Environmental Science & Technology, 2014, 48(20): 12229- 12237.
[39] Glöser S, Soulier M, Tercero Espinoza L A. Dynamic analysis of global copper flows. global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013, 47(12): 6564-6572.
[40] Wang C, Zhao L F, Lim M K, et al. Structure of the global plastic waste trade network and the impact of China's import Ban[J]. Resources, Conservation and Recycling, 2020, 153: 104591.
[41] Wang C, Huang X, Lim M K, et al. Mapping the structural evolution in the global scrap copper trade network [J]. Journal of Cleaner Production, 2020: 275122934.
[42] Hu X Q, Wang C, Lim M K, et al. Characteristics and community evolution patterns of the international scrap metal trade[J]. Journal of Cleaner Production, 2020, 243: 118576.
[43] 信达证券. 稀土永磁: 碳中和驱动需求加速增长[R]. 北京: 信达证券股份有限公司, 2021.
[44] 宋洪芳, 高玮. 稀土抛光粉最新动向[J]. 稀土信息, 2006(11): 26-29.
[45] 中国DVD行业市场发展历程[EB/OL]. (2012-02-20) [2022-05-16]. https://www.docin.com/p-345599545.html.
[46] 中金公司. 钕铁硼行业深度报告- “节能环保、 轻薄短小” 开拓成长之路[R]. 北京: 中国国际金融股份有限公司, 2011.
[47] 陈占恒, 叶少硕, 徐鹏. 2010年以来稀土市场分析与展望[J]. 稀土信息, 2016(6): 10-15.
[48] 黄小卫, 李红卫, 王国珍, 等. 我国稀土工业发展现状及进展[J]. 稀土信息, 2007, 31(3): 279-288.
[49] 刘跃, 谢丽英. 全球稀土消费现状及前景[J]. 稀土, 2008, 29(4): 98-101.
[50] 周喜, 韩晓英. 我国稀土产业现状及发展趋势(上)[J]. 稀土, 2010, 31(5): 96-101.
[51] 林河成. 稀土抛光粉的生产及应用现状[J]. 湿法冶金, 2002, 21(3): 117-119.
[52] 林河成. 我国稀土抛光粉的发展现状及前景[J]. 中国有色冶金, 2004, 33(1): 32-35.
[53] 窦宁. 我国稀土抛光粉产业现状浅析(下)[J]. 稀土信息, 2011, 12(12): 18-20.
[54] 刘余九. 中国稀土产业现状及发展的主要任务[J]. 中国稀土学报, 2007, 25(3): 257-263.
[55] 李振宏, 伍虹. 我国稀土应用的现状与前景[J]. 稀土, 1996, 17(6): 48-53.
[56] 慧聪. 发展节能电梯势在必行[J]. 中华建筑报, 2006, 4(3): 1.
[57] 郑学家. 第三代永磁体: 钕铁硼[J]. 辽宁化工, 2002, 31(2): 60-61.
[58] 谢丽英. 包头稀土抛光粉产业差距分析[J]. 稀土信息, 2010(6): 18-20.
[59] 马荣璋. 中国稀土行业现状及展望[J]. 稀土信息, 2012(8): 4-8.
[60] 陈占恒. 后WTO时代中国稀土供应与需求分析[J]. 新材料产业, 2014(1): 53-56.
[61] 陈占恒. 2018年稀土产业与市场简析[J]. 稀土信息, 2019(5): 26-30.
[62] 林河成. 我国稀土贮氢合金的生产、 应用与市场[J]. 矿冶, 2003, 12(2): 80-84.
[63] 张丽华, 张临婕. 近两年稀土贮氢合金及镍氢电池产业状况[J]. 稀土信息, 2012(1): 16-19.
[64] 宋洪芳. 我国稀土产业现状及发展趋势浅析[J]. 稀土信息, 2008, 4(12): 4-8.
[65] 林河成. 我国钕铁硼永磁体的生产及应用[J]. 有色冶炼, 2000, 29(2): 7-10.
[66] 林河成. 我国烧结钕铁硼永磁体的高速发展[J]. 上海有色金属, 2006, 27(4): 33-37.
[67] 中信证券. 中科三环(000970)投资价值分析报告-汽车领域爆发性增长, 钕铁硼领军者重装出发[R]. 北京: 中信证券股份有限公司, 2015.
[68] 浙商证券. 新材料&金属材料(有色)行业点评报告: 行业趋势拐点已现, 全新稀土产业时代来临[R]. 杭州: 浙商证券股份有限公公司, 2021.
[69] 2017年中国钕铁硼行业需求状况及未来发展趋势分析[EB/OL]. (2017-12-23)[2022-05-16]. https://www.chyxx.com/industry/201712/597079.html.
[70] 平安证券. 新材料系列深度报告之二: 关键战略材料篇, 高性能稀土永磁材料, 全球竞争力, 风起正当时[R]. 深圳: 平安证券股份有限公司, 2020.
[71] 王敏晰, 游孝岭, 李新. 电子废弃物中金属资源循环利用效率研究[J]. 国土资源科技管理, 2018, 35(2): 26- 39.