专题:初级矿产品供应安全战略

中国稀土镨元素的供需失衡问题——基于镨的物质流分析

  • 李新宇 ,
  • 汪鹏 ,
  • 王路 ,
  • 王鹤鸣 ,
  • 岳强 ,
  • 杜涛 ,
  • 陈伟强
展开
  • 1. 东北大学国家环境保护生态工业重点实验室, 沈阳 110819;
    2. 中国科学院城市环境研究所, 中国科学院城市环境与健康重点实验室, 厦门 361021;
    3. 中国科学院大学, 北京 100049;
    4. 中国科学院赣江创新研究院, 赣州 341000
李新宇,硕士研究生,研究方向为工业生态学,电子信箱: lixinyu_2019@hotmail.com

收稿日期: 2022-06-03

  修回日期: 2022-09-19

  网络出版日期: 2022-11-30

基金资助

国家自然科学基金项目(41871204,52070034)

On the imbalance between supply and demand of rare earth praseodymium in China: A praseodymium-based material flow analysis

  • LI Xinyu ,
  • WANG Peng ,
  • WANG Lu ,
  • WANG Heming ,
  • YUE Qiang ,
  • DU Tao ,
  • CHEN Weiqiang
Expand
  • 1. National Key Laboratory of Environmental Protection and Ecological Industry, Northeastern University, Shenyang 110819, China;
    2. Institute of Urban Environment, Chinese Academy of Sciences, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Ganjiang Institute of Innovation, Chinese Academy of Sciences, Ganzhou 341000, China

Received date: 2022-06-03

  Revised date: 2022-09-19

  Online published: 2022-11-30

摘要

基于动态物质流分析方法,以1990—2018年为时间边界,以中国大陆为空间边界,对镨的全生命周期流动情况和供需失衡问题进行了分析。结果表明:(1)1990—2018年中国累计开采超10万t的镨供下游产业应用,其中钕铁硼领域用镨量(6.9万t)占镨总用量的70%;(2)2009年以前,中国的镨供应充足(未登记消费3.1万t),2009年之后镨供应缺口逐年增大(未登记生产2.4万t);(3)镨的进口量和出口量均在增长,其中进口以稀土矿和镨的中间产品为主,出口以镨的中间产品和最终产品为主;(4)截至2018年镨的在用存量超过了3.7万t,其中有23%在空调、电声耳机和磁选机中,但回收不足。研究建议:(1)提升镨的回收能力,重点关注即将迎来报废高峰期的空调、电声耳机、磁选机、电机和消费电子;(2)优化镨贸易结构,提升镨贸易价值,加大镨原矿及初级产品进口,并适当控制其出口,以缓解镨供应压力来解决供需失衡问题;(3)合理布局低碳产业发展并通过探索钕铁硼永磁体替代产品推动去镨钕技术发展。

本文引用格式

李新宇 , 汪鹏 , 王路 , 王鹤鸣 , 岳强 , 杜涛 , 陈伟强 . 中国稀土镨元素的供需失衡问题——基于镨的物质流分析[J]. 科技导报, 2022 , 40(21) : 55 -65 . DOI: 10.3981/j.issn.1000-7857.2022.21.006

Abstract

Based on the dynamic material flow analysis method, this study takes 1990-2018 as the time boundary and mainland China as the spatial boundary to analyze the whole life cycle flow of praseodymium. It is found that 1) from 1990 to 2018, China mined more than 100000 t of praseodymium for downstream industrial applications, about 70% of which (68500 t of praseodymium) were used in NdFeB; 2) before 2009, China's praseodymium supply was sufficient (31000 t of unregistered consumption), and after 2009 the supply gap of praseodymium increased year by year (24000 t of unregistered production); 3) both import and export volumes of praseodymium increased, with import being mainly intermediate product of rare earth ores and praseodymium while export mainly intermediate product and final product of praseodymium; and 4) in 2018 the in-use stock of praseodymium exceeded 37000 t, of which 23% were in air conditioners, electroacoustic headphones and magnetic separators, with insufficient recycling. To resolve the problem between supply and demand this study put forward some suggestions, such as improving recycling capacity and technology of praseodymium, optimizing the structure of praseodymium trade, increasing the import of ore and primary products, properly controling export, and exploring NdFeB permanent magnet substitute products.

参考文献

[1] 林河成. 金属镨的生产及其应用发展[J]. 金属世界, 2007(2): 52-55.
[2] 中国的稀土状况与政策[EB/OL]. (2020-01-20)[2022- 05-16]. https://www.docin.com/p-2299035750.html.
[3] 周代数, 李小芬, 王胜光. 国际定价权视角下的中国稀土产业发展研究[J]. 工业技术经济, 2011, 30(2): 73-77.
[4] 宋文飞, 李国平, 韩先锋. 稀土定价权缺失、 理论机理及制度解释[J]. 中国工业经济, 2011(10): 46-55.
[5] 刘刚. 中国大宗商品定价权缺失问题探析: 以国际市场铁矿石与稀土定价为例[J]. 价格理论与实践, 2009(11): 25-26.
[6] 郭咏梅, 杨丽, 张文灿. 稀土不稀重在创新应用[J]. 稀土信息, 2020(7): 10-18.
[7] 白丽娜, 隋文力, 林忠. 白云鄂博矿在稀土和钢铁生产中放射性对周围环境的影响[J]. 稀土, 2004, 25(4): 75- 77.
[8] Du X, Graedel T E. Uncovering the global life cycles of the rare earth elements[J]. Scientific Reports, 2011, 1: 145.
[9] Du X, Graedel T E. Global in-use stocks of the rare Earth elements: A first estimate[J]. Environmental Science & Technology, 2011, 45(9): 4096-4101.
[10] Guyonnet D, Planchon M, Rollat A, et al. Material flow analysis applied to rare earth elements in Europe[J]. Journal of Cleaner Production, 2015, 107: 215-228.
[11] Du X, Graedel T E. Uncovering the end uses of the rare earth elements[J]. Science of the Total Environment, 2013, 461-462: 781-784.
[12] Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environmental Science & Technology, 2012, 46(6): 3406-3414.
[13] Li J, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions[J]. One Earth, 2020, 3(1): 116-125.
[14] Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 2019, 180: 903-917.
[15] Wang P, Li W, Kara S. Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages[J]. Journal of Cleaner Production, 2018, 174: 1492-1502.
[16] Elshkaki A. Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications[J]. Energy, 2020, 202: 117697.
[17] Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018—2030[J]. Resources, Conservation and Recycling, 2019, 145: 322-331.
[18] Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for US wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183: 1209-1226.
[19] Peiró L T, Méndez G V, Ayres R U. Material flow analysis of scarce metals: Sources, functions, end-uses and aspects for future supply[J]. 2013, 47(6): 2939-2947.
[20] Pavel C C, Lacal-Arántegui R, Marmier A, et al. Substitution strategies for reducing the use of rare earths in wind turbines[J]. Resources Policy, 2017, 52: 349-357.
[21] Yano J, Muroi T, Sakai S I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010—2030[J]. Journal of Material Cycles and Waste Management, 2016, 18(4): 655-664.
[22] Morf L S, Gloor R, Haag O, et al. Precious metals and rare earth elements in municipal solid waste-sources and fate in a Swiss incineration plant[J]. Waste Management, 2013, 33(3): 634-644.
[23] Schulze R, Buchert M. Estimates of global REE recycling potentials from NdFeB magnet material[J]. Resources, Conservation and Recycling, 2016, 113: 12-27.
[24] Sommer P, Rotter V S, Ueberschaar M. Battery related cobalt and REE flows in WEEE treatment[J]. Waste Management, 2015, 45: 298-305.
[25] Bi M, Liu W, Luan X, et al. Production, use, and fate of phthalic acid esters for polyvinyl chloride products in China[J]. Environmental Science & Technology, 2021, 55(20): 13980-13989.
[26] Graedel T E. Material flow analysis from origin to evolution[J]. Environmental Science & Technology, 2019, 53(21): 12188-12196.
[27] Liang C, Gracida-Alvarez U R, Gallant E T, et al. Material flows of polyurethane in the United States[J]. Environmental Science & Technology, 2021, 55(20): 14215- 14224.
[28] Zhang C, Liu B, Li N, et al. Resource nexus for sustainable development: Status quoand prospect[J]. Chinese Science Bulletin, 2021, 66(26): 3426-3440.
[29] Wang P, Ryberg M, Yang Y, et al. Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts[J]. Nature Communications, 2021, 12: 2066.
[30] Yue Q, Wang H M, Lu Z W. Quantitative estimation of social stock for metals Al and Cu in China[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1744-1752.
[31] Wang P, Wang H M, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022, 2(3): 392-395.
[32] 王俊博, 范蕾, 李新, 等. 基于物质流方法的中国铜资源社会存量研究[J]. 资源科学, 2016, 38(5): 939-947.
[33] Chen W Q, Graedel T E. Dynamic analysis of aluminum stocks and flows in the United States: 1900-2009[J]. Ecological Economics, 2012, 8192-102.
[34] 岳强, 王鹤鸣, 陆钟武. 中国2003年至2007年铝循环分析[J]. 资源科学, 2010, 32(3): 472-477.
[35] 刘立涛, 沈镭. 中国区域能源效率时空演进格局及其影响因素分析[J]. 自然资源学报, 2010, 25(12): 2142- 2153.
[36] Wang H M, Schandl H, Wang X Z, et al. Measuring progress of China's circular economy[J]. Resources, Conservation and Recycling, 2020, 163: 105070.
[37] Wang Q C, Wang P, Qiu Y, et al. Byproduct surplus: Lighting the depreciative europium in China's rare earth boom[J]. Environmental Science & Technology, 2020, 54(22): 14686-14693.
[38] Habib K, Schibye P K, Vestbø A P, et al. Material flow analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach[J]. Environmental Science & Technology, 2014, 48(20): 12229- 12237.
[39] Glöser S, Soulier M, Tercero Espinoza L A. Dynamic analysis of global copper flows. global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013, 47(12): 6564-6572.
[40] Wang C, Zhao L F, Lim M K, et al. Structure of the global plastic waste trade network and the impact of China's import Ban[J]. Resources, Conservation and Recycling, 2020, 153: 104591.
[41] Wang C, Huang X, Lim M K, et al. Mapping the structural evolution in the global scrap copper trade network [J]. Journal of Cleaner Production, 2020: 275122934.
[42] Hu X Q, Wang C, Lim M K, et al. Characteristics and community evolution patterns of the international scrap metal trade[J]. Journal of Cleaner Production, 2020, 243: 118576.
[43] 信达证券. 稀土永磁: 碳中和驱动需求加速增长[R]. 北京: 信达证券股份有限公司, 2021.
[44] 宋洪芳, 高玮. 稀土抛光粉最新动向[J]. 稀土信息, 2006(11): 26-29.
[45] 中国DVD行业市场发展历程[EB/OL]. (2012-02-20) [2022-05-16]. https://www.docin.com/p-345599545.html.
[46] 中金公司. 钕铁硼行业深度报告- “节能环保、 轻薄短小” 开拓成长之路[R]. 北京: 中国国际金融股份有限公司, 2011.
[47] 陈占恒, 叶少硕, 徐鹏. 2010年以来稀土市场分析与展望[J]. 稀土信息, 2016(6): 10-15.
[48] 黄小卫, 李红卫, 王国珍, 等. 我国稀土工业发展现状及进展[J]. 稀土信息, 2007, 31(3): 279-288.
[49] 刘跃, 谢丽英. 全球稀土消费现状及前景[J]. 稀土, 2008, 29(4): 98-101.
[50] 周喜, 韩晓英. 我国稀土产业现状及发展趋势(上)[J]. 稀土, 2010, 31(5): 96-101.
[51] 林河成. 稀土抛光粉的生产及应用现状[J]. 湿法冶金, 2002, 21(3): 117-119.
[52] 林河成. 我国稀土抛光粉的发展现状及前景[J]. 中国有色冶金, 2004, 33(1): 32-35.
[53] 窦宁. 我国稀土抛光粉产业现状浅析(下)[J]. 稀土信息, 2011, 12(12): 18-20.
[54] 刘余九. 中国稀土产业现状及发展的主要任务[J]. 中国稀土学报, 2007, 25(3): 257-263.
[55] 李振宏, 伍虹. 我国稀土应用的现状与前景[J]. 稀土, 1996, 17(6): 48-53.
[56] 慧聪. 发展节能电梯势在必行[J]. 中华建筑报, 2006, 4(3): 1.
[57] 郑学家. 第三代永磁体: 钕铁硼[J]. 辽宁化工, 2002, 31(2): 60-61.
[58] 谢丽英. 包头稀土抛光粉产业差距分析[J]. 稀土信息, 2010(6): 18-20.
[59] 马荣璋. 中国稀土行业现状及展望[J]. 稀土信息, 2012(8): 4-8.
[60] 陈占恒. 后WTO时代中国稀土供应与需求分析[J]. 新材料产业, 2014(1): 53-56.
[61] 陈占恒. 2018年稀土产业与市场简析[J]. 稀土信息, 2019(5): 26-30.
[62] 林河成. 我国稀土贮氢合金的生产、 应用与市场[J]. 矿冶, 2003, 12(2): 80-84.
[63] 张丽华, 张临婕. 近两年稀土贮氢合金及镍氢电池产业状况[J]. 稀土信息, 2012(1): 16-19.
[64] 宋洪芳. 我国稀土产业现状及发展趋势浅析[J]. 稀土信息, 2008, 4(12): 4-8.
[65] 林河成. 我国钕铁硼永磁体的生产及应用[J]. 有色冶炼, 2000, 29(2): 7-10.
[66] 林河成. 我国烧结钕铁硼永磁体的高速发展[J]. 上海有色金属, 2006, 27(4): 33-37.
[67] 中信证券. 中科三环(000970)投资价值分析报告-汽车领域爆发性增长, 钕铁硼领军者重装出发[R]. 北京: 中信证券股份有限公司, 2015.
[68] 浙商证券. 新材料&金属材料(有色)行业点评报告: 行业趋势拐点已现, 全新稀土产业时代来临[R]. 杭州: 浙商证券股份有限公公司, 2021.
[69] 2017年中国钕铁硼行业需求状况及未来发展趋势分析[EB/OL]. (2017-12-23)[2022-05-16]. https://www.chyxx.com/industry/201712/597079.html.
[70] 平安证券. 新材料系列深度报告之二: 关键战略材料篇, 高性能稀土永磁材料, 全球竞争力, 风起正当时[R]. 深圳: 平安证券股份有限公司, 2020.
[71] 王敏晰, 游孝岭, 李新. 电子废弃物中金属资源循环利用效率研究[J]. 国土资源科技管理, 2018, 35(2): 26- 39.
文章导航

/