采用Logistic模型,动态对比中美人工智能产业核心技术生命周期特征;综合技术生命周期和RTA指数,论述了中美人工智能产业核心技术演化趋势。研究结果表明:(1)2025—2030年将是中国人工智能产业核心技术发展突破的关键时期,应该牢牢抓住这一关键期以实现后发追赶。(2)中国在人工智能产业核心技术演化过程中,计算机视觉和智适应学习技术具有技术领先优势;在跨媒体分析推理和群体智能等综合性技术领域并不具备技术优势,即将面临着后发追赶的压力;脑机接口和智能芯片等技术密集型技术并未进入成熟期,要谨防先发国家的“技术锁定”和防御策略;而在自然语言处理和自主无人系统技术领域,依托自身广阔的市场和广泛的应用场景发展迅速。
By using Logistic model, the core technology life cycle characteristics in the artificial intelligence industry were dynamically compared between China and the USA. The evolution trend of the core technologies in artificial intelligence industry of China and the USA was discussed by integrating technology life cycle and RTA Index. It discovers that:(1) 2025-2030 will be the key period for the development and breakthrough of core technologies in artificial intelligence industry in China, and China should firmly grasp the critical period to achieve catching-up. (2) During the evolution of the core technologies in artificial intelligence industry, China had technological advantages in computer vision and intelligent adaptive learning, rather than comprehensive technical fields such as cross-media analysis and reasoning and swarm intelligence. Due to the brain-computer interface and smart chip not entering the mature period, China should be aware of the core technique lock-in and defense strategies of the first-mover. Relying on the broad markets and the wide range of application scenarios, natural language processing and autonomous unmanned system were developed rapidly.
[1] 习近平:在中国科学院第二十次院士大会、中国工程院第十五次院士大会、中国科协第十次全国代表大会上的讲话[EB/OL]. (2021-05-28)[2021-06-06]. http://www.xinhuanet.com/politics/leaders/2021-05/28/c_1127505377.htm.
[2] 刘刚, 杜爽. 我国人工智能科技产业发展动力机制的区域比较研究——基于北京市、杭州市和深圳市智能企业样本的价值网络分析[J]. 社会科学辑刊, 2021(1):107-117.
[3] 王友发, 罗建强, 周献中. 基于专利地图的人工智能研究总体格局、技术热点与未来趋势[J]. 中国科技论坛, 2019(10):80-89, 127.
[4] 王曰芬, 张露, 张洁逸. 产业领域核心专利识别与演化分析——以人工智能领域为例[J]. 情报科学, 2020, 38(12):19-26.
[5] 曾闻, 王曰芬, 周玜宇. 产业领域专利申请状态分布与演 化研 究——以人 工智 能领 域为 例[J]. 情报 科学, 2020, 38(12):4-11.
[6] 丁晟春, 刘嘉龙, 张洁逸. 产业领域专利技术构成与关联演化分析——以人工智能领域为例[J]. 情报科学, 2020, 38(12):12-18, 35.
[7] 宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40(1):33-38.
[8] 2019年人工智能发展白皮书[R]. 北京:中国科学院大数据挖掘与知识管理重点实验室, 2019.
[9] 杨大飞, 杨武, 田雪姣, 等. 基于专利数据的核心技术识别模型构建及实证研究[J]. 情报杂志, 2021, 40(2):47-54.
[10] 王山, 谭宗颖. 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11):144-153.
[11] 张奔. 国内外高速轨道技术生命周期特征的比较与启示——基于专利视角[J]. 情报杂志, 2020, 39(1):83-90.
[12] Moed H F, Glänzel W, Schmoch U. Handbook of quantitative science and technology research[M]. Dordrecht:Kluwer Academic Publishers, 2004.
[13] 中国信息通信研究院, 中国人工智能产业发展联盟. 人工智能核心技术产业白皮书——深度学习技术驱动下 的人 工智 能时 代[R/OL]. (2021-04-23)[2021-05-11]. https://pdf.dfcfw.com/pdf/H3_AP202104231487186149_1.pdf?1619174517000.pdf.
[14] 黄鲁成, 石媛嫄, 吴菲菲. 基于专利数据的太阳能电池研发态势及技术构成分析[J]. 情报杂志, 2015, 34(2):116-123.
[15] 科技部正式宣布依托商汤建设智能视觉国家新一代人工智能开放创新平台[EB/OL]. (2018-11-02)[2021-06-06]. http://www.xinhuanet.com/money/2019-08/30/c1124939770.htm.