专题:健康城乡人居环境建设

建成环境影响出行安全研究进展

  • 陈春 ,
  • 杨钦智 ,
  • 李媛媛
展开
  • 1. 重庆交通大学智慧城市学院, 重庆 400074;
    2. 重庆交通大学生态人居与绿色交通研究中心, 重庆 400074;
    3. 重庆市国土整治中心, 重庆 400024
陈春,教授,研究方向为土地利用与交通安全,电子信箱:chenchun@pku.edu.cn

收稿日期: 2022-04-13

  修回日期: 2022-10-20

  网络出版日期: 2022-12-13

基金资助

国家自然科学基金项目(42071218)

International research progress on the impact of built environment on travel safety and its enlightenment

  • Chen Chun ,
  • Yang Qinzhi ,
  • Li Yuanyuan
Expand
  • 1. College of Smart City, Chongqing Jiaotong University, Chongqing 400074, China;
    2. Centre of Ecological Habitat and Green Transportation, Chongqing 400074, China;
    3. Chongqing Land Consolidation and Rehabilitation Center, Chongqing 400024, China

Received date: 2022-04-13

  Revised date: 2022-10-20

  Online published: 2022-12-13

摘要

建成环境与行人的出行安全有关。梳理了建成环境影响出行安全的要素分析,评述了城市发展模式、密度、土地利用、道路环境以及交通管理设施5个方面的研究进展。对中国未来的建成环境与出行安全的研究提出建议和展望。

本文引用格式

陈春 , 杨钦智 , 李媛媛 . 建成环境影响出行安全研究进展[J]. 科技导报, 2022 , 40(22) : 43 -54 . DOI: 10.3981/j.issn.1000-7857.2022.22.005

Abstract

With the rapid urbanization and motorization in China, road traffic accidents occur frequently. The improvement of built environment can effectively reduce the travel risk of pedestrians. However, at present, it draws little attention in China. Therefore, based on the existing literature and research, this paper systematically combs the related research on the impact of built environment on travel safety, and systematically reviews the research progress in this field from five aspects including urban development mode, density, land use, road environment and traffic management. This paper puts forward suggestions and prospects for the future study of built environment and travel safety in China, and appeals to urban planning academia to increase the research and attention on the impact of built environment on traffic safety.

参考文献

[1] 国务院安全生产委员会. 道路交通安全"十三五" 规划[EB/OL].[2022-09-20]. http://www.mem.gov.cn/awhsy_3512/gwyawh/201709/t20170907_246388.shtml.
[2] 赵琳娜, 贾兴无, 戴帅. 中国城市道路交通安全特点解析[J]. 城市交通, 2018, 16(3):9-14.
[3] 陆化普. 城市交通管理评价体系[M]. 北京:人民交通出版社, 2003.
[4] 张殿业. 道路交通安全管理评价体系[M]. 北京:人民交通出版社, 2005.
[5] 谭少华, 李英侠. 住区街道步行安全影响因素实证研究[J]. 城市问题, 2014(8):50-54.
[6] Roll J, McNeil N. Race and income disparities in pedestrian injuries:Factors influencing pedestrian safety inequity[J]. Transportation Research Part D-Transport and Envioronment, 2022, 107:103294.
[7] Zahabi S, Strauss J, Manaugh K, et al. Estimating potential effect of speed limits, built environment, and other factors on severity of pedestrian and cyclist injuries in crashes[J]. Transportation Research Record, 2011(2247):81-90.
[8] Osama A, Sayed T. Macro-spatial approach for evaluating the impact of socio-economics, land use, built environment, and road facility on pedestrian safety[J]. Canadian Journal of Civil Engineering, 2017, 44(12):1036-1044.
[9] Grigoropoulos G, Hosseini S A, Keler A, et al. Traffic simulation analysis of bicycle highways in urban areas[J]. Sustainability, 2021, 13(3):1016.
[10] Van Cauwenberg J, Van Holle V, Simons D, et al. Environmental factors influencing older adults' walking for transportation:A study using walk-along interviews[J]. International Journal of Behavioral Nutrition and Physical Activity, 2012, 9:85.
[11] Aziz H, Nagle N N, Morton A M, et al. Exploring the impact of walk-bike infrastructure, safety perception, and built-environment on active transportation mode choice:A random parameter model using New York City commuter data[J]. Transportation, 2018, 45(5):1207-1229.
[12] Handy S L, Boarnet M G, Ewing R, et al. How the built environment affects physical activity:Views from urban planning[J]. American Journal of Preventive Medicine, 2002, 23(2S):64-73.
[13] Frank L D, Schmid T L, Sallis J F, et al. Linking objectively measured physical activity with objectively measured urban form:Findings from SMARTRAQ[J]. American Journal of Preventive Medicine, 2005, 28(2S2):117-125.
[14] Gitelman V, Levi S, Carmel S, et al. Exploring patterns of child pedestrian behaviors at urban intersections[J]. Accident, Analysis and Prevention, 2018, 122:36-47.
[15] Vansteenkiste P, Zeuwts L, Cardon G, et al. A hazardperception test for cycling children:An exploratory study[J]. Transportation Research:Part F, 2016, 41:182-194.
[16] Daniela K, Wolfgang S. Older People's perceptions of friendliness and traffic safety:An experiment using computer-simulated walking environments[J]. International Journal of Environmental Research and Public Health, 2015, 12(8):10066-10078.
[17] Gálvez-Pérez D, Guirao B, Ortuño Padilla A, et al. The influence of built environment factors on elderly pedestrian road safety in cities:The experience of madrid[J]. International Journal of Environmental Research and Public Health, 2022, 19(4):2280.
[18] Yang Y, Chung H, Kim J S, et al. Local or neighborhood? Examining the relationship between traffic accidents and land use using a gradient boosting machine learning method:The case of Suzhou Industrial Park, China[J]. Journal of Advanced Transportation, 2021:8246575.
[19] Liu H, Wei H, Zuo T, et al. Fine-tuning ADAS algorithm parameters for optimizing traffic safety and mobility in connected vehicle environment[J]. Transportation Research Part C-Emerging Technologies, 2017, 76:132-149.
[20] Sun Y, Zhang J, Wang X, et al. Recognition method of drinking-driving behaviors based on PCA and RBF neural network[J]. Promet, 2018, 30(4):407-417.
[21] Alisan O, Tuydes-Yaman H, Ozguven E E. TabuSearch-Based combinatorial subset selection approach to support investigation of built environment and traffic safety relationship[J]. Transportation Research Record, 2022, doi:10.1177/03611981221108161.
[22] Jongeneel-Grimen B, Busschers W, Droomers M, et al. Change in neighborhood traffic safety:Does it matter in terms of physical activity?[J]. PLoS One, 2013, 8(5):62525.
[23] Esteban-Cornejo I, Conway C Carlson J A, Conway T L, et al. Parental and adolescent perceptions of neighborhood safety related to adolescents' physical activity in their neighborhood[J]. Research Quarterly for Exercise and Sport, 2016, 87(2):191-199.
[24] Hu L, Wu X H, Huang J, et al. Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha, China[J]. Safety Science, 2020, 127:104710.
[25] Jones D K, Evenson K R, Rodriguez D A, et al. Addressing pedestrian safety:A content analysis of pedestrian master plans in north carolina[J]. Traffic Injury Prevention, 2010, 11(1):57-65.
[26] Cervero R, Kockelman K M. Travel demand and the 3Ds:Density, diversity and design[J]. Transportation Research, 1997, 2(3):199-219.
[27] Ewing R, Cervero R. Travel and the built environment:A meta-analysis[J]. Journal of the American Planning Association, 2010, 76(3):265-294.
[28] Handy S, Cao X, Mokhtarian P L. Self-Selection in the relationship between the built environment and walking:Empirical evidence from Northern California[J]. Journal of the American Planning Association, 2006, 72(1):55-74.
[29] Hamidi S, Ewing R, Preuss I, et al. Measuring sprawl and its impacts[J]. Journal of Planning Education and Research, 2015, 35(1):35-50.
[30] NHTSA. Traffic safety facts 2011:A compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system[R]. Washington:NHTSA, 2011.
[31] Ewing R, Pendall R, Chen D. Measuring sprawl and its transportation impacts[J]. Transportation Research Record, 2003, 1831(1):175-183.
[32] Ewing R, Schweiber R, Zegeer C V. Urban sprawl as a risk factor in motor vehicle occupant and pedestrian fatalities[J]. American Journal of Public Health, 2003, 93(9):1541-1545.
[33] Dumbaugh E, Rae R. Safe urban form:Revisiting the relationship between community design and traffic safety[J]. Journal of the American Planning Association, 2009, 75(3):309-329.
[34] Yeo J, Park S, Jang K, et al. Effects of urban sprawl and vehicle miles traveled on traffic fatalities[J]. Traffic Injury Prevention, 2015, 16(4):397-403.
[35] Moudon A V, Lin L, Jiao J F, et al. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington[J]. Accident Analysis & Prevention, 2011, 43(1):11-24.
[36] Graham D, Glaister S. Spatial variation in road pedestrian casualties:The role of urban scale, density and landuse Mix[J]. Urban Studies, 2003, 40(8):1591-1607.
[37] Ding C, Chen P, Jiao J F. Non-linear effects of the built environment on automobile-involved pedestrian crash Frequency:A machine learning approach[J]. Accident Analysis & Prevention, 2018, 112:116-126.
[38] Agran P F, Winn D G, Anderson C L. The role of the physical and traffic environment in child pedestrian injuries[J]. Pediatrics, 1996, 98(1):1096-103.
[39] Ukkusuri S, Hasan S, Aziz H M A. Random parameter model used to explain effects of built-environment characteristics on pedestrian crash frequency[J]. Transportation Research Record:Journal of the Transportation Research Board, 2011, 2237:98-106.
[40] Narayanamoorthy S, Paleti R, Bhat C R. On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level[J]. Transportation Research Part B:Methodological, 2013, 55:245-264.
[41] Wang Y, Kockelman K M. A poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods[J]. Accident Analysis & Prevention, 2013, 60:71-84.
[42] Miranda-Moreno L F, Morency P, El-Geneidy A M. The link between built environment, pedestrian activity and pedestrian-vehicle collision occurrence at signalized intersections[J]. Accident Analysis & Prevention, 2011, 43:1624-1634.
[43] Chen P, Zhou J. Effects of the built environment on automobile-involved pedestrian crash frequency and risk[J]. Journal of Transportation Health, 2016, 3(4):448-456.
[44] Ukkusuri S, Miranda-Moreno L F, Ramadurai G, et al. The role of built environment on pedestrian crash frequency[J]. Safety Science, 2012, 50:1141-1151.
[45] Siddiqui C, Abdel-Aty M, Choi K. Macroscopic spatial analysis of pedestrian and bicycle crashes[J]. Accident Analysis & Prevention, 2012, 45:382391.
[46] Retting R, Fergunson S, McCartt A. A review of evidence-based traffic engineering measures designed to reduce pedestrian-motor vehicle crashes[J]. American Journal of Public Health, 2003, 93:1456-1463.
[47] Hanson C S, Noland R B, Brown C. The severity of pedestrian crashes:An analysis using google street view imagery[J]. Journal of Transport Geography, 2013, 33:42-53.
[48] Sullivan J M, Flannagan M J. The role of ambient light level in fatal crashes:Interferences from daylight savings time transitions[J]. Accident Analysis & Prevention, 2002, 34(4):487-89.
[49] Griswold J, Fishbain B, Washington S, et al. Visual assessment of pedestrian crashes[J]. Accident Analysis & Prevention, 2011, 43(1):301-306.
[50] Isola P D, Bogert J N, Chapple K M, et al. Google street view assessment of environmental safety features at the scene of pedestrian automobile injury[J]. Journal of Trauma & Acute Care Surgery, 2019, 87(1):82-86.
[51] Tanja C, Giovanni S, Paolo C, et al. Built environment features and pedestrian accidents:An italian retrospective study[J]. Sustainability, 2019, 11(4):1064-1078.
[52] Dumbaugh E. Safe streets, livable streets[J]. Journal of the American Planning Association, 2005, 71(3):283-300.
[53] Zegeer C V, Council F M. Safety relationships associated with aross-sectional aoadway alements[J]. Transportation Research Record:Journal of the Transportation Research Board, 1995:29-36.
[54] Swift P, Painter D, Goldstein M. residential street typology and injury accident frequency[R]. Longmont:Longmont Planning Department, 2006.
[55] Guo Q, Xu P P, Pei X, et al. The effect of road network patterns on pedestrian safety:A zone-based Bayesian spatial modeling approach[J]. Accident Analysis & Prevention, 2017, 99:114-124.
[56] Marks H. Subdividing for traffic safety[J]. Traffic Quarterly, 1957, 11(3):308-325.
[57] Persaud B N, Retting R A, Garder P E, et al. Crash reductions following installation of roundabouts in the United States[R]. Arlington, VA:Insurance Institute for Highway Safety, 2002.
[58] Hadayeghi A, Shalaby A S, Persaud B N, et al. Temporal transferability and updating of zonal level accident prediction Models[J]. Accident Analysis & Prevention, 2006, 38(3):579-589.
[59] Ladrón de Guevara F, Washington S P, Jutaek O, et al. Forecasting crashes at the planning level:Simultaneous negative binomial crash model applied in Tucson, Arizona[J]. Transportation Research Record:Journal of the Transportation Research Board, 2004, 1897:191-199.
[60] Zhao H, Yin Z Y, Chen R, et al. Investigation of 184 passenger Aar-Pedestrian accidents[J]. International Journal of Crashworthiness, 2010, 15(3):313-320.
[61] Charles V, Zegeer. Pedestrian crash trends and potential countermeasures from around the world[J]. Accident Analysis & Prevention, 2012, 44(1):3-11.
[62] Khayesi, Margie, Peden, Margaret M. World report on road traffic injury prevention[R]. Geneva:World Health Organization, 2004.
[63] Zegeer C V, Seiderman C, Lagerwey P, et al. Pedestrian facilities users guide-providing safety and mobility[R]. Chapel Hill, NC:Highway Safety Research Center. 2002.
[64] Box P C. Curb-Parking problems:Overview[J]. Journal of Transportation Engineering, 2004, 130(1):1-5.
[65] Geoplan Urban&Traffic Planning. Evaluation of pedestrian road safety facilities[R]. Sydney:Road Safety Bureau, Roads&Traffic Authority, 1993.
[66] Sullivan J M, Flannagan M J. The role of ambient light level in fatal crashes:Interferences from daylight savings time transitions[J]. Accident Analysis & Prevention, 2002, 34(4):487-89.
[67] 柳林, 宋广文, 周素红, 等. 城市空间结构对惠州市中心城区交通事故影响的时间差异分析[J]. 地理科学, 2015, 35(1):75-83.
[68] 王成, 谢波. 土地利用视角下城市交通事故驱动机理的研究进展[J]. 地理科学, 2020(9):1597-1606.
[69] 谢波, 庞哲, 安子豪. 基于交通安全视角的城市土地混合利用模式研究[J]. 城市发展研究, 2020, 27(8):19-24.
[70] 王雪松, 袁景辉. 城郊公路路网特征交通安全影响研究[J]. 中国公路学报, 2017, 30(4):106-114.
[71] 王岩, 杨晓光. 主动道路交通安全规划体系[J]. 系统工程, 2006, 24(1):30-35.
文章导航

/