专题:健康城乡人居环境建设

热激活建筑系统研究进展

  • 陈萨如拉 ,
  • 常甜馨 ,
  • 杨洋 ,
  • 张智 ,
  • 郭安妮
展开
  • 1. 安徽建筑大学安徽省国土空间规划与生态研究院, 合肥 230601;
    2. 安徽建筑大学建筑与规划学院, 合肥 230601;
    3. 合肥工业大学建筑与艺术学院, 合肥 230601;
    4. 西部绿色建筑国家重点实验室, 西安 710055;
    5. 安徽安天利信工程管理股份有限公司, 合肥 230071
陈萨如拉,讲师,研究方向为低碳建筑设计与储能技术,电子信箱:sarul@tju.edu.cn

收稿日期: 2022-04-18

  修回日期: 2022-10-20

  网络出版日期: 2022-12-13

基金资助

国家重点研发计划项目(2021YFE0200100);国家自然科学基金项目(52208103);安徽省自然科学基金项目(2108085QE241,2208085QE163);安徽省国土空间规划与生态研究院开放课题(AHJZNX-2021-03);安徽省住房城乡建设科学技术计划项目(2022-YF062);中国-葡萄牙文化遗产保护科学“一带一路”联合实验室建开放课题(SDYY2102);西部绿色建筑国家重点实验室开放基金项目(LSKF202303)

Research progress on thermo-activated building system

  • CHEN Sarula ,
  • CHANG Tianxin ,
  • YANG Yang ,
  • ZHANG Zhi ,
  • GUO Anni
Expand
  • 1. Anhui Institute of Territorial Space Planning and Ecology, Anhui Jianzhu University, Hefei 230601, China;
    2. School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China;
    3. College of Architecture and Art, Hefei University of Technology, Hefei 230601, China;
    4. State Key Laboratory of Green Building in Western China, Xi'an 710055, China;
    5. Anhui AHTECH Lixin Engineering Management Co., Ltd., Hefei 230071, China

Received date: 2022-04-18

  Revised date: 2022-10-20

  Online published: 2022-12-13

摘要

基于控制围护结构传热温差而提出的热激活建筑系统(TABS),可利用注入低品位能源形成热屏障的方式降低建筑负荷,是实现建筑能碳双控目标的重要措施。提出了TABS分类与评价方法,从热工性能、集成设计、可持续性和应用潜力等角度对空气基、液体基和固体基TABS进行了梳理与对比分析。现有研究表明:集成空气基TABS的围护结构当量传热系数小于0.3 W/(m2·K),渗透型还具备热回收与空气净化的双重效果;液体基TABS在一体化集成和热激活效能方面更具优势,围护结构当量传热系数可降至-3.6 W/(m2·K);固体基TABS则具有无循环工质、无运动部件和无噪音等优点,围护结构当量传热系数可降至-3.0 W/(m2·K),但未来需要解决其立面集成和热电模块商业化等问题。

本文引用格式

陈萨如拉 , 常甜馨 , 杨洋 , 张智 , 郭安妮 . 热激活建筑系统研究进展[J]. 科技导报, 2022 , 40(22) : 55 -65 . DOI: 10.3981/j.issn.1000-7857.2022.22.006

Abstract

The thermo-activated building system (TABS), which is considered to be an important measure to achieve the goal of dual control of energy and carbon in buildings, can reduce the building load by injecting low-grade energy to form a thermal barrier. The proposed system is based on controlling the heat transfer temperature difference of the envelope. This paper presents the classification and evaluation methods of TABS, and systematically compares and analyzes air-based, liquid-based and solidbased TABS from the perspectives of thermal performance, integrated design, sustainability and application potential. Existing studies show that the equivalent heat transfer coefficient of the envelope integrated with air-based TABS is less than 0.3 W/(m2· K). Permeable air-based TABS also has the dual effect of heat recovery and air purification; Liquid-based TABS is more advantageous in terms of integration and operational energy efficiency, with an equivalent heat transfer coefficient of the envelope down to -3.6 W/(m2·K); Solid-based TABS has the advantages of no working fluid, no moving parts and no noise, and its envelope equivalent heat transfer coefficient can be reduced to -3.0 W/(m2·K). However, issues such as its façade integration and commercialization of thermoelectric modules need to be addressed in the future.

参考文献

[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2021[M]. 北京:中国建筑工业出版社, 2021:4-15.
[2] 阳栋, 李晃, 李水生, 等. 建筑业减碳途径及实施策略[J]. 科技导报, 2022, 40(11):105-110.
[3] 陈平, 孙澄. 近零能耗建筑概念演进、总体策略与技术框架[J]. 科技导报, 2021, 39(13):108-116.
[4] 徐伟. 中国近零能耗建筑研究和实践[J]. 科技导报, 2017, 35(10):38-43.
[5] 周军莉, 童宝龙, 张泉, 等. 建筑开口对自然通风效果及建筑能耗影响模拟分析[J]. 科技导报, 2012, 30(18):21-26.
[6] 杨柳, 侯立强, 刘江, 等. 围护结构蓄热性能对建筑负荷的影响分析[J]. 太阳能学报, 2018, 39(11):3138-3146.
[7] Yang Y, Chen S. Thermal insulation solutions for opaque envelope of low-energy buildings:A systematic review of methods and applications[J]. Renewable and Sustainable Energy Reviews, 2022, 167:112738.
[8] 周燕, 龚光彩. 基于㶲分析和生命周期评价的既有建筑围护结构节能改造[J]. 科技导报, 2010, 28(23):99-103.
[9] Moretti E, Belloni E, Agosti F, et al. Innovative mineral fiber insulation panels for buildings:Thermal and acoustic characterization[J]. Applied Energy, 2016, 169:421-432.
[10] Fang X D, Xia L L. Heating performance investigation of a bidirectional partition fluid thermal diode[J]. Renewable Energy, 2010, 35(3):679-684.
[11] Koenders S, Loonen R, Hensen J, et al. Investigating the potential of a closed-loop dynamic insulation system for opaque building elements[J]. Energy and Buildings, 2018, 173:409-427.
[12] 李慧勇, 曲世琳, 冀如, 等. 建筑热激活系统热特性研究[J]. 建筑节能, 2019, 47(6):22-27.
[13] 郭海新, 张帆, 晋照华, 等. 恒温动物体温控制机理及建筑围护结构热活性化的探索[C]//2018国际绿色建筑与建筑节能大会论文集, 北京:中国城市出版社, 2018:620-628.
[14] Chen S, Yang Y, Olomi C, et al. Numerical study on the winter thermal performance and energy saving potential of thermo-activated PCM composite wall in existing buildings[J]. Building Simulation, 2020, 13(2):237-256.
[15] Dharmasastha K, Samuel D, Nagendra S, et al. Thermal comfort of a radiant cooling system in glass fiber reinforced gypsum roof-An experimental study[J]. Applied Thermal Engineering, 2022, 214:118842.
[16] Fawaier M, Bokor B. Dynamic insulation systems of building envelopes:A review[J]. Energy and Buildings, 2022, 270:112268.
[17] Krajčík M, Arıcı M, Šikula O, et al. Review of waterbased wall systems:Heating, cooling, and thermal barriers[J]. Energy and Buildings, 2021, 253:111476.
[18] Luo Y Q, Zhang L, Bozlar M, et al. Active building envelope systems toward renewable and sustainable energy[J]. Renewable and Sustainable Energy Reviews, 2019, 104:470-491.
[19] Hastings, Robert S, Mørck O. Solar air systems:A design handbook[M]. London:Earthscan, 2000:175-185.
[20] Zeiler W, Boxem G. Geothermal active building concept[M]. Berlin:Springer, 2009:305-314.
[21] Witte D, Klijnchevalerias M L, Loonen R C G M, et al. Convective concrete:Additive manufacturing to facilitate activation of thermal mass[J]. Journal of Facade Design and Engineering, 2017, 5(1):107-117.
[22] Klijnchevalerias M L, Loonen R C G M, Zarzycka A, et al. Assisting the development of innovative responsive façade elements using building performance simulation[C]//Proceedings of Symposium on Simulation for Architecture and Urban Design 2017(SimAUD 2017). Toronto:Simulation Councils, 2017:243-250.
[23] Imbabi M S. A passive-active dynamic insulation system for all climates[J]. International Journal of Sustainable Built Environment, 2012, 1(2):247-258.
[24] Brown A, Peacock A. Dynamic Insulation:20130008109A1[P]. 2013-01-10.
[25] Fantucci S, Serra V, Perino M, et al. Dynamic insulation systems:experimental analysis on a parietodynamic wall[J]. Energy Procedia, 2015, 78:549-554.
[26] Alongi A, Angelotti A, Mazzarella L, et al. Experimental validation of a steady periodic analytical model for breathing walls[J]. Building and Environment, 2020, 168:106509.
[27] Alongi A, Angelotti A, Rizzo A, et al. Measuring the thermal resistance of double and triple layer pneumatic cushions for textile architectures[J]. Architectural Engineering and Design Management, 2020, 17(3/4):334-346.
[28] Alongi A, Angelotti A, Mazzarella L, et al. Measuring a breathing wall's effectiveness and dynamic behaviour[J]. Indoor and Built Environment, 2019, 29(6):783-792.
[29] Wang J B, Du Q Z, Zhang C, et al. Mechanism and preliminary performance analysis of exhaust air insulation for building envelope wall[J]. Energy and Buildings, 2018, 173:516-529.
[30] Zhang C, Gang W J, Xu X H, et al. Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air[J]. Applied Energy, 2019, 240:730-743.
[31] Dalehaug A. Development and survey of a wall construction using dynamic insulation[C]//Proceedings of the 3rd Symposium on Building Physics in the Nordic Countries. Copenhagen:Building Physics, 1993:219-226.
[32] Gan G. Numerical evaluation of thermal comfort in rooms with dynamic insulation[J]. Building and Environment, 2000, 35(5):445-453.
[33] Craig S, Grinham J. Breathing walls:The design of porous materials for heat exchange and decentralized ventilation[J]. Energy and Buildings, 2017, 149:246-259.
[34] Krzaczek M, Kowalczuk Z. Thermal Barrier as a technique of indirect heating and cooling for residential buildings[J]. Energy and Buildings, 2011, 43(4):823-837.
[35] Meggers F, Baldini L, Leibundgut H, et al. An innovative use of renewable ground heat for insulation in low exergy building systems[J]. Energies, 2012, 5(8):3149-3166.
[36] Zhou L, Li C. Study on thermal and energy-saving performances of pipe-embedded wall utilizing low-grade energy[J]. Applied Thermal Engineering, 2020, 176:115477.
[37] Kisilewicz T, Fedorczakcisak M, Barkanyi T, et al. Active thermal insulation as an element limiting heat loss through external walls[J]. Energy and Buildings, 2019, 205:109541.
[38] Mikeska T, Svendsen S. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete[J]. Applied Thermal Engineering, 2013, 52(2):576-584.
[39] 秦思宇, 王宇昂, 李扬, 等. 采用稳态模型的毛细管墙体热工特性研究[J]. 西安交通大学学报, 2018, 52(5):142-148.
[40] 陈尚斐, 隋学敏. 不同冷辐射表面位置对内嵌管式围护结构供冷房间负荷的影响[J]. 制冷与空调, 2020, 34(1):86-90.
[41] Niu F, Yu Y. Location and optimization analysis of capillary tube network embedded in active tuning building wall[J]. Energy, 2016, 97:36-45.
[42] Yu Y B, Niu F X, Guo H, et al. A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water[J]. Energy, 2016, 99:250-265.
[43] Yang Y, Chen S, Chang T X, et al. Uncertainty and global sensitivity analysis on thermal performances of pipeembedded building envelope in the heating season[J]. Energy Conversion and Management, 2021, 244:114509.
[44] Krzaczek M, Florczuk J, Tejchman J, et al. Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings[J]. Applied Energy, 2019, 254:113711.
[45] Romani J, Cabeza L F, Perez G, et al. Experimental testing of cooling internal loads with a radiant wall[J]. Renewable Energy, 2018, 116:1-8.
[46] Romani J, Belusko M, Alemu A, et al. Optimization of deterministic controls for a cooling radiant wall coupled to a PV array[J]. Applied Energy, 2018, 229:1103-1110.
[47] Zhu Q, Xu X, Wang J, et al. Development of dynamic simplified thermal models of active pipe-embedded building envelopes using genetic algorithm[J]. International Journal of Thermal Sciences, 2014, 76:258-272.
[48] 朱求源, 徐新华. 内嵌管式围护结构的频域热特性[J]. 华中科技大学学报(自然科学版), 2013, 41(11):64-67.
[49] 闫帅, 沈翀, 李先庭, 等. 嵌管式窗户全年动态性能预测方法[J]. 暖通空调, 2018, 48(2):18-23.
[50] Shen C, Li X T. Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season[J]. Energy and Buildings, 2017, 138:318-331.
[51] Shen C, Li X T. Dynamic thermal performance of pipeembedded building envelope utilizing evaporative cooling water in the cooling season[J]. Applied Thermal Engineering, 2016, 106:1103-1113.
[52] Simko M, Krajcik M, Sikula O, et al. Insulation panels for active control of heat transfer in walls operated as space heating or as a thermal barrier:Numerical simulations and experiments[J]. Energy and Buildings, 2018, 158:135-146.
[53] 陈萨如拉, 常甜馨, 杨洋, 等. 既有建筑嵌管式相变复合墙体夏季热特性研究(英文)[J]. 中国科学技术大学学报, 2021, 51(11):840-856.
[54] Lydon G P, Caranovic S, Hischier I, et al. Coupled simulation of thermally active building systems to support a digital twin[J]. Energy and Buildings, 2019, 202:109208.
[55] Zhu L, Yang Y, Chen S, et al. Thermal performances study on a façade-built-in two-phase thermosyphon loop for passive thermo-activated building system[J]. Energy Conversion and Management, 2019, 199:112059.
[56] Yan T, Gao J J, Xu X H, et al. Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self-activated heat removal[J]. International Journal of Thermal Sciences, 2019, 144:27-41.
[57] Yan T, Sun Z W, Gao J J, et al. Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation[J]. Renewable Energy, 2020, 146:1451-1464.
[58] 陈萨如拉, 常甜馨, 潘超, 等. 带有十字钻孔的双U型热激活建筑围护结构:CN214620769U[P]. 2021-11-05.
[59] 陈萨如拉, 常甜馨, 潘超, 等. 带有旋转钻孔的单U型热激活建筑围护结构:CN214619894U[P]. 2021-11-05.
[60] 律宝莹, 杨洋, 陈萨如拉. 一种模块化墙体围护结构:CN210086549U[P]. 2020-02-18.
[61] 杨洋, 聂玮, 陈萨如拉, 等. 固体基热激活建筑外围护结构:CN112944432A[P]. 2021-06-11.
[62] Chow T, Li C Y, Lin Z, et al. Innovative solar windows for cooling-demand climate[J]. Solar Energy Materials and Solar Cells, 2010, 94(2):212-220.
[63] Gil-lopez T, Gimenezmolina C. Influence of double glazing with a circulating water chamber on the thermal energy savings in buildings[J]. Energy and Buildings, 2013, 56:56-65.
[64] Li C Y, Tang H D. Evaluation on year-round performance of double-circulation water-flow window[J]. Renewable Energy, 2020, 150:176-190.
[65] Maerefat M, Haghighi A P. Natural cooling of standalone houses using solar chimney and evaporative cooling cavity[J]. Renewable Energy, 2010, 35(9):2040-2052.
[66] Naticchia B, Dorazio M, Carbonari A, et al. Energy performance evaluation of a novel evaporative cooling technique[J]. Energy and Buildings, 2010, 42(10):1926-1938.
[67] Alaidroos A, Krarti M. Numerical modeling of ventilated wall cavities with spray evaporative cooling system[J]. Energy and Buildings, 2016, 130:350-365.
[68] Prieto A, Knaack U, Auer T, et al. COOLFACADE:State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration[J]. Renewable and Sustainable Energy Reviews, 2019, 101:395-414.
[69] Ibanezpuy M, Martingomez C, Bermejobusto J, et al. Ventilated Active Thermoelectric Envelope (VATE):Analysis of its energy performance when integrated in a building[J]. Energy and Buildings, 2018, 158:1586-1592.
[70] Khire R, Messac A, Van Dessel S, et al. Design of thermoelectric heat pump unit for active building envelope systems[J]. International Journal of Heat and Mass Transfer, 2005, 48(19):4028-4040.
[71] Liu Z B, Zhang L, Gong G C, et al. Experimental evaluation of an active solar thermoelectric radiant wall system[J]. Energy Conversion and Management, 2015, 94:253-260.
[72] Luo Y Q, Zhang L, Liu Z B, et al. Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates[J]. Energy, 2018, 142:384-399.
文章导航

/