[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2021[M]. 北京:中国建筑工业出版社, 2021:4-15.
[2] 阳栋, 李晃, 李水生, 等. 建筑业减碳途径及实施策略[J]. 科技导报, 2022, 40(11):105-110.
[3] 陈平, 孙澄. 近零能耗建筑概念演进、总体策略与技术框架[J]. 科技导报, 2021, 39(13):108-116.
[4] 徐伟. 中国近零能耗建筑研究和实践[J]. 科技导报, 2017, 35(10):38-43.
[5] 周军莉, 童宝龙, 张泉, 等. 建筑开口对自然通风效果及建筑能耗影响模拟分析[J]. 科技导报, 2012, 30(18):21-26.
[6] 杨柳, 侯立强, 刘江, 等. 围护结构蓄热性能对建筑负荷的影响分析[J]. 太阳能学报, 2018, 39(11):3138-3146.
[7] Yang Y, Chen S. Thermal insulation solutions for opaque envelope of low-energy buildings:A systematic review of methods and applications[J]. Renewable and Sustainable Energy Reviews, 2022, 167:112738.
[8] 周燕, 龚光彩. 基于㶲分析和生命周期评价的既有建筑围护结构节能改造[J]. 科技导报, 2010, 28(23):99-103.
[9] Moretti E, Belloni E, Agosti F, et al. Innovative mineral fiber insulation panels for buildings:Thermal and acoustic characterization[J]. Applied Energy, 2016, 169:421-432.
[10] Fang X D, Xia L L. Heating performance investigation of a bidirectional partition fluid thermal diode[J]. Renewable Energy, 2010, 35(3):679-684.
[11] Koenders S, Loonen R, Hensen J, et al. Investigating the potential of a closed-loop dynamic insulation system for opaque building elements[J]. Energy and Buildings, 2018, 173:409-427.
[12] 李慧勇, 曲世琳, 冀如, 等. 建筑热激活系统热特性研究[J]. 建筑节能, 2019, 47(6):22-27.
[13] 郭海新, 张帆, 晋照华, 等. 恒温动物体温控制机理及建筑围护结构热活性化的探索[C]//2018国际绿色建筑与建筑节能大会论文集, 北京:中国城市出版社, 2018:620-628.
[14] Chen S, Yang Y, Olomi C, et al. Numerical study on the winter thermal performance and energy saving potential of thermo-activated PCM composite wall in existing buildings[J]. Building Simulation, 2020, 13(2):237-256.
[15] Dharmasastha K, Samuel D, Nagendra S, et al. Thermal comfort of a radiant cooling system in glass fiber reinforced gypsum roof-An experimental study[J]. Applied Thermal Engineering, 2022, 214:118842.
[16] Fawaier M, Bokor B. Dynamic insulation systems of building envelopes:A review[J]. Energy and Buildings, 2022, 270:112268.
[17] Krajčík M, Arıcı M, Šikula O, et al. Review of waterbased wall systems:Heating, cooling, and thermal barriers[J]. Energy and Buildings, 2021, 253:111476.
[18] Luo Y Q, Zhang L, Bozlar M, et al. Active building envelope systems toward renewable and sustainable energy[J]. Renewable and Sustainable Energy Reviews, 2019, 104:470-491.
[19] Hastings, Robert S, Mørck O. Solar air systems:A design handbook[M]. London:Earthscan, 2000:175-185.
[20] Zeiler W, Boxem G. Geothermal active building concept[M]. Berlin:Springer, 2009:305-314.
[21] Witte D, Klijnchevalerias M L, Loonen R C G M, et al. Convective concrete:Additive manufacturing to facilitate activation of thermal mass[J]. Journal of Facade Design and Engineering, 2017, 5(1):107-117.
[22] Klijnchevalerias M L, Loonen R C G M, Zarzycka A, et al. Assisting the development of innovative responsive façade elements using building performance simulation[C]//Proceedings of Symposium on Simulation for Architecture and Urban Design 2017(SimAUD 2017). Toronto:Simulation Councils, 2017:243-250.
[23] Imbabi M S. A passive-active dynamic insulation system for all climates[J]. International Journal of Sustainable Built Environment, 2012, 1(2):247-258.
[24] Brown A, Peacock A. Dynamic Insulation:20130008109A1[P]. 2013-01-10.
[25] Fantucci S, Serra V, Perino M, et al. Dynamic insulation systems:experimental analysis on a parietodynamic wall[J]. Energy Procedia, 2015, 78:549-554.
[26] Alongi A, Angelotti A, Mazzarella L, et al. Experimental validation of a steady periodic analytical model for breathing walls[J]. Building and Environment, 2020, 168:106509.
[27] Alongi A, Angelotti A, Rizzo A, et al. Measuring the thermal resistance of double and triple layer pneumatic cushions for textile architectures[J]. Architectural Engineering and Design Management, 2020, 17(3/4):334-346.
[28] Alongi A, Angelotti A, Mazzarella L, et al. Measuring a breathing wall's effectiveness and dynamic behaviour[J]. Indoor and Built Environment, 2019, 29(6):783-792.
[29] Wang J B, Du Q Z, Zhang C, et al. Mechanism and preliminary performance analysis of exhaust air insulation for building envelope wall[J]. Energy and Buildings, 2018, 173:516-529.
[30] Zhang C, Gang W J, Xu X H, et al. Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air[J]. Applied Energy, 2019, 240:730-743.
[31] Dalehaug A. Development and survey of a wall construction using dynamic insulation[C]//Proceedings of the 3rd Symposium on Building Physics in the Nordic Countries. Copenhagen:Building Physics, 1993:219-226.
[32] Gan G. Numerical evaluation of thermal comfort in rooms with dynamic insulation[J]. Building and Environment, 2000, 35(5):445-453.
[33] Craig S, Grinham J. Breathing walls:The design of porous materials for heat exchange and decentralized ventilation[J]. Energy and Buildings, 2017, 149:246-259.
[34] Krzaczek M, Kowalczuk Z. Thermal Barrier as a technique of indirect heating and cooling for residential buildings[J]. Energy and Buildings, 2011, 43(4):823-837.
[35] Meggers F, Baldini L, Leibundgut H, et al. An innovative use of renewable ground heat for insulation in low exergy building systems[J]. Energies, 2012, 5(8):3149-3166.
[36] Zhou L, Li C. Study on thermal and energy-saving performances of pipe-embedded wall utilizing low-grade energy[J]. Applied Thermal Engineering, 2020, 176:115477.
[37] Kisilewicz T, Fedorczakcisak M, Barkanyi T, et al. Active thermal insulation as an element limiting heat loss through external walls[J]. Energy and Buildings, 2019, 205:109541.
[38] Mikeska T, Svendsen S. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete[J]. Applied Thermal Engineering, 2013, 52(2):576-584.
[39] 秦思宇, 王宇昂, 李扬, 等. 采用稳态模型的毛细管墙体热工特性研究[J]. 西安交通大学学报, 2018, 52(5):142-148.
[40] 陈尚斐, 隋学敏. 不同冷辐射表面位置对内嵌管式围护结构供冷房间负荷的影响[J]. 制冷与空调, 2020, 34(1):86-90.
[41] Niu F, Yu Y. Location and optimization analysis of capillary tube network embedded in active tuning building wall[J]. Energy, 2016, 97:36-45.
[42] Yu Y B, Niu F X, Guo H, et al. A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water[J]. Energy, 2016, 99:250-265.
[43] Yang Y, Chen S, Chang T X, et al. Uncertainty and global sensitivity analysis on thermal performances of pipeembedded building envelope in the heating season[J]. Energy Conversion and Management, 2021, 244:114509.
[44] Krzaczek M, Florczuk J, Tejchman J, et al. Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings[J]. Applied Energy, 2019, 254:113711.
[45] Romani J, Cabeza L F, Perez G, et al. Experimental testing of cooling internal loads with a radiant wall[J]. Renewable Energy, 2018, 116:1-8.
[46] Romani J, Belusko M, Alemu A, et al. Optimization of deterministic controls for a cooling radiant wall coupled to a PV array[J]. Applied Energy, 2018, 229:1103-1110.
[47] Zhu Q, Xu X, Wang J, et al. Development of dynamic simplified thermal models of active pipe-embedded building envelopes using genetic algorithm[J]. International Journal of Thermal Sciences, 2014, 76:258-272.
[48] 朱求源, 徐新华. 内嵌管式围护结构的频域热特性[J]. 华中科技大学学报(自然科学版), 2013, 41(11):64-67.
[49] 闫帅, 沈翀, 李先庭, 等. 嵌管式窗户全年动态性能预测方法[J]. 暖通空调, 2018, 48(2):18-23.
[50] Shen C, Li X T. Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season[J]. Energy and Buildings, 2017, 138:318-331.
[51] Shen C, Li X T. Dynamic thermal performance of pipeembedded building envelope utilizing evaporative cooling water in the cooling season[J]. Applied Thermal Engineering, 2016, 106:1103-1113.
[52] Simko M, Krajcik M, Sikula O, et al. Insulation panels for active control of heat transfer in walls operated as space heating or as a thermal barrier:Numerical simulations and experiments[J]. Energy and Buildings, 2018, 158:135-146.
[53] 陈萨如拉, 常甜馨, 杨洋, 等. 既有建筑嵌管式相变复合墙体夏季热特性研究(英文)[J]. 中国科学技术大学学报, 2021, 51(11):840-856.
[54] Lydon G P, Caranovic S, Hischier I, et al. Coupled simulation of thermally active building systems to support a digital twin[J]. Energy and Buildings, 2019, 202:109208.
[55] Zhu L, Yang Y, Chen S, et al. Thermal performances study on a façade-built-in two-phase thermosyphon loop for passive thermo-activated building system[J]. Energy Conversion and Management, 2019, 199:112059.
[56] Yan T, Gao J J, Xu X H, et al. Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self-activated heat removal[J]. International Journal of Thermal Sciences, 2019, 144:27-41.
[57] Yan T, Sun Z W, Gao J J, et al. Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation[J]. Renewable Energy, 2020, 146:1451-1464.
[58] 陈萨如拉, 常甜馨, 潘超, 等. 带有十字钻孔的双U型热激活建筑围护结构:CN214620769U[P]. 2021-11-05.
[59] 陈萨如拉, 常甜馨, 潘超, 等. 带有旋转钻孔的单U型热激活建筑围护结构:CN214619894U[P]. 2021-11-05.
[60] 律宝莹, 杨洋, 陈萨如拉. 一种模块化墙体围护结构:CN210086549U[P]. 2020-02-18.
[61] 杨洋, 聂玮, 陈萨如拉, 等. 固体基热激活建筑外围护结构:CN112944432A[P]. 2021-06-11.
[62] Chow T, Li C Y, Lin Z, et al. Innovative solar windows for cooling-demand climate[J]. Solar Energy Materials and Solar Cells, 2010, 94(2):212-220.
[63] Gil-lopez T, Gimenezmolina C. Influence of double glazing with a circulating water chamber on the thermal energy savings in buildings[J]. Energy and Buildings, 2013, 56:56-65.
[64] Li C Y, Tang H D. Evaluation on year-round performance of double-circulation water-flow window[J]. Renewable Energy, 2020, 150:176-190.
[65] Maerefat M, Haghighi A P. Natural cooling of standalone houses using solar chimney and evaporative cooling cavity[J]. Renewable Energy, 2010, 35(9):2040-2052.
[66] Naticchia B, Dorazio M, Carbonari A, et al. Energy performance evaluation of a novel evaporative cooling technique[J]. Energy and Buildings, 2010, 42(10):1926-1938.
[67] Alaidroos A, Krarti M. Numerical modeling of ventilated wall cavities with spray evaporative cooling system[J]. Energy and Buildings, 2016, 130:350-365.
[68] Prieto A, Knaack U, Auer T, et al. COOLFACADE:State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration[J]. Renewable and Sustainable Energy Reviews, 2019, 101:395-414.
[69] Ibanezpuy M, Martingomez C, Bermejobusto J, et al. Ventilated Active Thermoelectric Envelope (VATE):Analysis of its energy performance when integrated in a building[J]. Energy and Buildings, 2018, 158:1586-1592.
[70] Khire R, Messac A, Van Dessel S, et al. Design of thermoelectric heat pump unit for active building envelope systems[J]. International Journal of Heat and Mass Transfer, 2005, 48(19):4028-4040.
[71] Liu Z B, Zhang L, Gong G C, et al. Experimental evaluation of an active solar thermoelectric radiant wall system[J]. Energy Conversion and Management, 2015, 94:253-260.
[72] Luo Y Q, Zhang L, Liu Z B, et al. Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates[J]. Energy, 2018, 142:384-399.