专题:太平洋火山研究前沿

火山成因的海啸触发机制分析

  • 张坎 ,
  • 李琳琳 ,
  • 胡桂
展开
  • 1. 中山大学地球科学与工程学院, 广东省地球动力作用与地质灾害重点实验室, 广州 510275;
    2. 南方海洋科学与工程广东省实验室 (珠海), 珠海 519082
张坎,硕士研究生,研究方向为海洋地质灾害,电子信箱:Zhangk293@mail2.sysu.edu.cn

收稿日期: 2022-10-20

  修回日期: 2022-12-20

  网络出版日期: 2023-02-10

基金资助

国家自然科学基金项目(41976197);海南省重点研发项目(ZDYF2020209)

Analysis on the triggering mechanism of volcanic tsunamis

  • ZHANG Kan ,
  • LI Linlin ,
  • HU Gui
Expand
  • 1. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhuhai 519082, China

Received date: 2022-10-20

  Revised date: 2022-12-20

  Online published: 2023-02-10

摘要

2022年汤加火山爆发,引发了全球范围内的海啸,使火山海啸这一非典型性海啸受到学界的广泛关注。整理了全球历史火山海啸事件相关数据,分析了火山地震、火山结构失稳、水下爆炸、火山碎屑流、气压波这5种触发海啸的机制,介绍了2022年汤加火山海啸事件触发机制。指出未来火山海啸的研究方向为:从地质构造角度分析潜在海啸灾害的时空分布规律;以气象海啸和水下爆炸为重点,发展完善火山海啸各机制及传播理论;从技术角度解决火山海啸的相关预警问题。

本文引用格式

张坎 , 李琳琳 , 胡桂 . 火山成因的海啸触发机制分析[J]. 科技导报, 2023 , 41(2) : 35 -43 . DOI: 10.3981/j.issn.1000-7857.2023.02.004

Abstract

In 2022, the Tonga volcanic eruption triggered a global tsunami. The widely observed volcanic tsunami attracts wide attention to such an atypical tsunami source in the academic world. In this paper, we review the historical records of volcanic tsunamis and summarize the triggering mechanisms into five categories:volcanic earthquake, volcanic structure instability, underwater explosion, pyroclastic flow and atmospheric pressure wave. We also briefly discuss the triggering mechanism of the 2022 Tonga volcanic tsunami event. It is pointed out that the future research directions of volcanic tsunamis are as follows:analyzing the temporal and spatial distribution of potential volcanic tsunamis from tectonics; Developing and perfecting the mechanism and propagation theory of potential volcanic tsunami with the emphasis on meteorological tsunami and underwater explosion; Solving the volcanic tsunami warning problems from the technical point.

参考文献

[1] 李琳琳, 邱强, 李志刚, 等.南海海啸灾害研究进展及展望[J].中国科学:地球科学, 2022, 52(5):803-831.
[2] Terry J P, Goff J, Winspear N, et al.Tonga volcanic eruption and tsunami, January 2022:Globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau[J].Geoscience Letters, 2022, 9(1):1-11.
[3] Matoza R S, Fee D, Assink J D, et al.Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga[J].Science, 2022, 377(6601):95-100.
[4] Amores A, Monserrat S, Marcos M, et al.Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption[J].Geophysical Research Letters, 2022, 49(6):e2022GL098240.
[5] Carvajal M, Sepúlveda I, Gubler A, et al.Worldwide signature of the 2022 Tonga volcanic tsunami[J].Geophysical Research Letters, 2022, 49(6):e2022GL098153.
[6] Yuen D A, Scruggs M A, Spera F J, et al.Under the surface:Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano[J].Earthquake Research Advances, 2022, 2(3):100134.
[7] 胡羽丰, 李振洪, 王乐, 等.2022年汤加火山喷发的综合遥感快速解译分析[J].武汉大学学报(信息科学版), 2022, 47(2):242-251.
[8] Heki K.Ionospheric signatures of repeated passages of atmospheric waves by the 2022 Jan.15 Hunga Tonga-Hunga Ha'apai eruption detected by QZSS-TEC observations in Japan[J].Earth, Planets, and Space, 2022, 74(1):1-12.
[9] Kulichkov S N, Chunchuzov I P, Popov O E, et al.Acoustic-gravity Lamb waves from the eruption of the HungaTonga-Hunga-Hapai volcano, its energy release and impact on aerosol concentrations and tsunami[J].Pure and Applied Geophysics, 2022, 179(5):1533-1548.
[10] Kubota T, Saito T, Nishida K.Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption[J].Science, 2022, 377(6601):91-94.
[11] Adam D.Tonga volcano eruption created puzzling ripples in Earth's atmosphere[J].Nature, 2022, 601(7894):497.
[12] National Geophysical Data Center.World data service:NCEI/WDS Global Historical Tsunami Database[EB/OL].(2021-07-07)[2022-09-23].https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/event-search.doi:10.7289/V5PN93H7.
[13] National Geophysical Data Center.World data service (NGDC/WDS):NCEI/WDS Global Significant Volcanic Eruptions Database[EB/OL].(2021-07-08)[2022-9-23].https://www.ngdc.noaa.gov/hazel/view/hazards/volcano/event-search.
[14] Paris R.Source mechanisms of volcanic tsunamis[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373(2053):20140380.
[15] Ewing M, Press F.Tide-gage disturbances from the great eruption of Krakatoa[J].Eos, Transactions American Geophysical Union, 1955, 36(1):53-60.
[16] Harkrider D, Press F.The krakatoa air-sea waves-an example of pulse propagation in coupled systems[J].Geophysical Journal of the Royal Astronomical Society, 1967, 13(1/2/3):149-159.
[17] Yokoyama I.A scenario of the 1883 Krakatau tsunami[J].Journal of Volcanology and Geothermal Research, 1987, 34(1):123-132.
[18] Latter J.Tsunamis of volcanic origin:Summary of causes, with parti-cular reference to krakatoa, 1883[J].Bulletin volcanologique, 1981, 44(3):467-490.
[19] Nomanbhoy N, Satake K.Generation mechanism of tsunamis from the 1883 Krakatau eruption[J].Geophysical research letters, 1995, 22(4):509-512.
[20] Paris R, Switzer A D, Belousova M, et al.Volcanic tsunami:A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea)[J].Natural Hazards, 2014, 70(1):447-470.
[21] 任锦章, 赵谊.火山地震的概念和一般特征——国外火山监测研究的进展(一)[J].东北地震研究, 1990(1):95-100.
[22] Walter T R, Amelung F.Volcanic eruptions following M > or=9 megathrust earthquakes:Implications for the Sumatra-Andaman volcanoes[J].Geology (Boulder), 2007, 35(6):539-542.
[23] Keating B H, McGuire W J.Island edifice failures and associated tsunami hazards[J].Pure and Applied Geophysics, 2000, 157(6):899-955.
[24] Bonaccorso A, Calvari S, Garfì G, et al.Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations[J].Geophysical Research Letters, 2003, 30(18), doi:10.1029/2003GL017702.
[25] Maramai A, Graziani L, Alessio G, et al.Near-and farfield survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami[J].Marine Geology, 2005, 215(1/2):93-106.
[26] Masson D G, Harbitz C B, Wynn R B, et al.Submarine landslides:Processes, triggers and hazard prediction[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006, 364(1845):2009-2039.
[27] Ward S N, Day S.Cumbre Vieja volcano:Potential collapse and tsunami at La Palma, Canary Islands[J].Geophysical research letters, 2001, 28(17):3397-3400.
[28] Venzke, E.Global Volcanism Program, 2013.Volcanoes of the World, v.4.11.2[Z/OL].Washington, D.C.:Smithsonian Institution.https://doi.org/10.5479/si.GVP.VOTW4-2013.
[29] Belousov A, Voight B, Belousova M, et al.Tsunamis generated by subaquatic volcanic explosions:Unique data from 1996 eruption in Karymskoye Lake, Kamchatka, Russia[J].Pure and Applied Geophysics, 2000, 157(6):1135-1143.
[30] Le Méhauté B.Theory of explosion-generated water waves[J].Advanced Hydroscience, 1971, 7:1-79.
[31] Hayward M W, Whittaker C N, Lane E M, et al.Multilayer modelling of waves generated by explosive subaqueous volcanism[J].Natural Hazards and Earth System Sciences, 2022, 22(2):617-637.
[32] Le Méhauté B, Wang S.Water waves generated by underwater explosion[M].Singapore:World Scientific, 1996.
[33] Sato H, Taniguchi H.Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions:Implications for energy partitioning[J].Geophysical research letters, 1997, 24(3):205-208.
[34] Watts P, Waythomas C F.Theoretical analysis of tsunami generation by pyroclastic flows[J].Journal of Geophysical Research:Solid Earth, 2003, 108(B12):2563.
[35] Cas R A F, Wright J V.Subaqueous pyroclastic flows and ignimbrites:An assessment[J].Bulletin of Volcanology, 1991, 53(5):357-380.
[36] Mccoy F W, Heiken G.Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece[J].Pure and Applied Geophysics, 2000, 157(6/7/8):1227-1256.
[37] Freundt A.Entrance of hot pyroclastic flows into the sea:experimental observations[J].Bulletin of Volcanology, 2003, 65(2/3):144-164.
[38] Kelfoun K, Samaniego P, Palacios P, et al.Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador)[J].Bulletin of Volcanology, 2009, 71(9):1057-1075.
[39] Maeno F, Imamura F.Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia[J].Journal of Geophysical Research, 2011, 116(B9):205.
[40] Monserrat S, Vilibic I, Rabinovich A B.Meteotsunamis:Atmospherically induced destructive ocean waves in the tsunami frequency band[J].Natural hazards and earth system sciences, 2006, 6(6):1035-1051.
[41] Schellart W P, Lister G S, Toy V G.A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region:Tectonics controlled by subduction and slab rollback processes[J].Earth-Science Reviews, 2006, 76(3/4):191-233.
[42] Garvin J B, Slayback D A, Ferrini V, et al.Monitoring and modeling the rapid evolution of Earth's Newest Volcanic Island:Hunga Tonga Hunga Ha'apai (Tonga) using high spatial resolution satellite observations[J].Geophysical Research Letters, 2018, 45(8):3445-3452.
[43] Brenna M, Cronin S J, Smith I E M, et al.Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera:Hunga volcano, Tonga, SW Pacific[J].Lithos, 2022, 412-413:106614.
[44] Wunderman, R.Global Volcanism Program.Report on Hunga Tonga-Hunga Ha'apai (Tonga) bulletin of the Global Volcanism Network 40:1[R/OL].Washington, DC:Smithsonian Institution.https://doi.org/10.5479/si.GVP.BGVN201501-243040.
[45] Burt S.Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022[J].Weather, 2022, 77(3):76-81.
[46] National Oceanic and Atmospheric Administration.Deepocean assessment and reporting of Tsunamis (DART(R))[EB/OL].(2022-02-15)[2022-03-10].https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc:G10068.
[47] GNS Science.NZ Deep-ocean assessment and reporting of Tsunami (DART) data set[EB/OL].(2022-02-15)[2022-03-10].https://doi.org/10.21420/8TCZ-TV02.
[48] Flanders Marine Institute (VLIZ).Intergovernmental Oceanographic Commission (IOC) (2022):Sea level station monitoring facility[EB/OL].(2022-02-15)[2022-03-10].https://www.ioc-sealevelmonitoring.org.
[49] Otsuka S.Visualizing Lamb Waves from a volcanic eruption using Meteorological Satellite Himawari 8[J].Geophysical Research Letters, 2022, 49(8):e2022GL098324.
[50] Themens D R, Watson C, Žagar N, et al.Global propagation of ionospheric disturbances associated with the 2022 Tonga Volcanic Eruption[J].Geophysical Research Letters, 2022, 49(7):e2022GL098158.
[51] Hu G, Li L, Ren Z, et al.The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean[J/OL].Natural Hazards and Earth System Sciences Discussions, 2022:1-30.https://doi.org/10.5194/nhess-2022-200, preprint.
[52] Kubota T, Saito T, Nishida K.Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption[J].Science, 2022, 377(6601):91-94.
[53] Tanioka Y, Yamanaka Y, Nakagaki T.Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption[J].Earth, Planets and Space, 2022, 74(1):1-7.
文章导航

/