专题:太平洋火山研究前沿

汤加-克马德克俯冲带的地质构造与地震火山特征

  • 张志文 ,
  • 杨晓东
展开
  • 1. 中国科学院边缘海与大洋地质重点实验室, 中国科学院南海海洋研究所, 南海生态环境工程创新研究院, 广州 511458;
    2. 中国科学院大学, 北京 100049;
    3. 南方海洋科学与工程广东省实验室 (广州), 广州 511458;
    4. 中国-巴基斯坦地球科学研究中心, 中国科学院-巴基斯坦高等教育委员会, 巴基斯坦伊斯兰堡 45320
张志文,博士研究生,研究方向为海底构造与地球物理,电子信箱:zhangzhiwen191@mails.ucas.ac.cn

收稿日期: 2022-10-20

  修回日期: 2022-12-27

  网络出版日期: 2023-02-10

基金资助

国家自然科学基金项目(41890813,42276222);中国科学院国际合作局项目(131551KYSB20200021,133244KYSB20180029);中国科学院人才引进项目(E1SL3C02);中国科学院南海海洋研究所自主部署项目(SCSIO202207)

Geological structures and earthquake and volcano hazards along Tonga-Kermadec Subduction Zone

  • ZHANG Zhiwen ,
  • YANG Xiaodong
Expand
  • 1. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
    4. China-Pakistan Joint Research Center on Earth Science, CAS-HEC, Islamabad 45320, Pakistan

Received date: 2022-10-20

  Revised date: 2022-12-27

  Online published: 2023-02-10

摘要

2022年1月15日西南太平洋的洪阿哈阿帕伊岛海底火山发生了爆炸式的剧烈喷发,吸引了全球的关注。洪阿哈阿帕伊岛海底火山位于汤加-克马德克俯冲带,综合前期研究结果,对汤加-克马德克俯冲带的地质构造特征、地震和火山分布进行初步分析,发现:(1)从汤加-克马德克俯冲带弧前向海方向直到俯冲的太平洋板块,构造上主要表现为大规模正断层。(2)路易斯维尔海山链的俯冲将汤加-克马德克俯冲带分为北部的汤加俯冲带和南部的克马德克俯冲带,沿汤加俯冲带板块汇聚率为67~84 mm/a,沿克马德克俯冲带板块汇聚率为41~58 mm/a,板块俯冲速度的差异造成汤加俯冲带和克马德克俯冲带目前俯冲深度的不同。(3)在路易斯维尔海山链以北,太平洋板块上覆沉积物厚度不足0.4 km,而在南侧达到1 km左右,由于俯冲板块上覆沉积物厚度的差异而造成北部的汤加俯冲带和南部的克马德克俯冲带孕育地震能力的差异。这些认识对研究该俯冲带的火山喷发机制、大地震成因机理及其灾害风险具有重要意义。

本文引用格式

张志文 , 杨晓东 . 汤加-克马德克俯冲带的地质构造与地震火山特征[J]. 科技导报, 2023 , 41(2) : 56 -64 . DOI: 10.3981/j.issn.1000-7857.2023.02.007

Abstract

On January 15, 2022, an explosive and violent eruption occurred on the undersea volcano of Hunga Haapai Island in the southwest Pacific Ocean, attracting global attention. The Hunga Haapai Island is located in the Tonga-Kermadec subduction zone. Based on the previous research results, this paper makes a preliminary analysis of the geological structures, seismic and volcanic distribution of the Tonga-Kermadec subduction zone, and finds that (1) The forearc area of the Tonga-Kermadec subduction zone mainly develops large-scale normal faults; (2) The subduction of the Louisville Ridge Seamount Chain divides the Tonga-Kermadec subduction zone into the Tonga subduction zone in the north and the Kermadec subduction zone in the south. The plate aggregation rate along the Tonga subduction zone is 67-84 mm/a, and the plate aggregation rate along the Kermadec subduction zone is 41~58 mm/a. The difference in plate aggregation speed cause differences in the current subduction depth between the Tonga subduction zone and the Kermadec subduction zone; (3) North of the Louisville Ridge Seamount Chain, the thickness of the overburden sediment in the Pacific Plate is less than 0.4 km, and it reaches about 1 km on the south side. Differences in sediment thickness cause differences in earthquake generating capacity in the Tonga subduction zone and the Kermadec subduction zone. These understandings are of great significance for studying the volcanic eruption mechanism, the cause mechanism of major earthquakes and disaster risk in the subduction zone.

参考文献

[1] Peirce C, Watts A.R/V Sonne SO215-Cruise Report, The Louisville Ridge-Tonga Trench collision:Implications for subduction zone dynamics[R].Durham:Durham University, 2011.
[2] Bassett D, Kopp H, Sutherland R, et al.Crustal structure of the Kermadec arc from MANGO seismic refraction profiles[J].Journal of Geophysical Research:Solid Earth, 2016, 121(10):7514-7546.
[3] Crawford W C, Hildebrand J A, Dorman L M, et al.Tonga Ridge and Lau Basin crustal structure from seismic refraction data[J].Journal of Geophysical Research:Solid Earth, 2003, 108(B4):2195.
[4] Ballance P F, Ablaev A G, Pushchin I K, et al.Morphology and history of the Kermadec-trench-arc-backarc basin-remnant arc system at 30°to 32°S:Geophysical profile, microfossil and K-Ar data[J].Marine Geology, 1999, 159(1/2/3/4):35-62.
[5] Contreras-Reyes E, Grevemeyer I, Watts A B, et al.Deep seismic structure of the Tonga subduction zone:Implications for mantle hydration, tectonic erosion, and arc magmatism[J].Journal of Geophysical Research:Solid Earth, 2011, 116(B10):B10103.
[6] Funnell M J, Peirce C, Stratford W R, et al.Structure and deformation of the Kermadec forearc in response to subduction of the Pacific oceanic plate[J].Geophysical Journal International, 2014, 199(2):1286-1302.
[7] Ballance P F, Scholl D W, Vallier T L, et al.Subduction of a late Cretaceous seamount of the Louisville Ridge at the Tonga Trench:A model of normal and accelerated tectonic erosion[J].Tectonics, 1989, 8(5):953-962.
[8] Zellmer K E, Taylor B.A three-plate kinematic model for Lau Basin opening[J].Geochemistry, Geophysics, Geosystems, 2001, 2(5):1020.
[9] Ruellan E, Delteil J, Wright I, et al.From rifting to active spreading in the Lau Basin-Havre Trough backarc system (SW Pacific):Locking/unlocking induced by seamount chain subduction, Geochem[J].Geochemistry, Geophysics, Geosystems, 2003, 4(5):8909.
[10] Reagan M K, McClelland W C, Girard G, et al.The geology of the southern Mariana fore-arc crust:Implications for the scale of Eocene volcanism in the western Pacific[J].Earth and Planetary Science Letters, 2013, 380:41-51.
[11] Pelletier B, Dupont J.Erosion, accretion, back-arc extension and slab length along the Kermadec subduction zone, Southwest Pacific[J].Comptes Rendus de l'Académie des Sciences, 1990, 310:1657-1664.
[12] Billen M I, Gurnis M.Constraints on subducting plate strength within the Kermadec trench[J].Journal of Geophysical Research:Solid Earth, 2005, 110(B5):1-18.
[13] Arredondo K M, Billen M I.Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity[J].Physics of the Earth and Planetary Interiors, 2012, 196/197:1-13.
[14] Clift P D, Bednarz U, Boe R, et al.Sedimentation on the Tonga forearc related to arc rifting, subduction erosion, and ridge collision:A synthesis of results from sites 840 and 841[M].College Station, TX (Ocean Drilling Program), 1994:135.
[15] Stratford W R, Peirce C, Paulatto M, et al.Seismic velocity structure and deformation due to the collision of the Louisville Ridge with the Tonga-Kermadec Trench[J].Geophysical Journal International, 2015, 200(3):1503-1522.
[16] von Huene R, Ranero C R, Vannucchi P, et al.Generic model of subduction erosion[J].Geology, 2004, 32(10):913-916.
[17] Sallar`es V, Ranero C R.Structure and tectonics of the erosional convergent margin off Antofagasta, north Chile (23°30'S)[J].Journal of Geophysical Research:Solid Earth, 2005, 110(B6):B06101.
[18] Timm C, Bassett D, Graham I J, et al.Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc[J].Nature Communications, 2013, 4:1720.
[19] Lonsdale P F.A multibeam reconnaissance of the Tonga trench axis and its intersection with the Louisville Guyot Chain[J].Marine Geophysical Researches, 1986, 8:295-327.
[20] Bonnardot M A, Regnier M, Christova C, et al.Seismicity and state of stress within the overriding plate of the Tonga-Kermadec subduction zone[J].Tectonics, 2007, 26(5):TC5017.
[21] Herzer R H, Exon N F.Structure and basin analysis of the Southern Tonga Forear[M]//Geology and offshore resources of Pacific island arcs-Tonga region, Earth Science Series.Vol.2.Houston:Circum-Pacific Council for Energy and Mineral Resources, 1985.
[22] Sutherland R.Basement geology and tectonic development of the greater New Zealand region:An interpretation from regional magnetic data[J].Tectonophysics, 1999, 308(3):341-362.
[23] Clift P D, MacLeod C J.Slow rates of subduction erosion estimated from subsidence and tilting of the Tonga forearc[J].Geology, 1999, 27(5):411-414.
[24] Herzer R H, Barker D H N, Roest W R, et al.Oligocene Miocene spreading history of the northern South Fiji Basin and imply cations for the evolution of the New Zealand plate boundary, Geochem[J].Geochemistry, Geophysics, Geosystems, 2011, 12(2), doi:10.1029/2010GC003291.
[25] Bloomer S H, Taylor B, Macleod C J, et al.Early arc volcanism and the ophiolite problem:A perspective from drilling in the Western Pacific[M]//Active Margins and Marginal Basins of the Western Pacific.Hoboken:Wiley, 1995:88.
[26] Terry J, Goff J, Winspear N, et al.Tonga volcanic eruption and tsunami, January 2022:Globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau[J].Geoscience Letters, 2022, 9(1):1-11.
[27] 宋雨佳, 盘晓东, 康建红.汤加海底火山喷发事件回顾及其灾害影响[J].城市与减灾, 2022, 142(1):11-14.
[28] Lapusta N, Rice J.Nucleation and early seismic propagation of small and large events in a crustal earthquake model[J].Journal of Geophysical Research:Solid Earth, 2003, 108(B4):2205.
[29] Bilek S, Schwartz S, DeShon H, et al.Control of seafloor roughness on earthquake rupture behavior[J].Geology, 2003, 31(5):455-458.
[30] Duan B.Dynamic rupture of the 2011 Mw 9.0 TohokuOki earthquake:Roles of a possible subducting seamount[J].Journal of Geophysical Research:Solid Earth, 2012, 117(B5):B05311.
[31] Ruff L, Kanamori H.Seismicity and the subduction process[J].Physics of the Earth and Planetary Interiors, 1980, 23(3):240-252.
[32] Wirth E A, Sahakian V J, Wallace L M, et al.The occurrence and hazards of great subduction zone earthquakes[J].Nature Reviews Earth & Environment, 2022, 3:125-140.
[33] Corbi F, Herrendörfer R, Funiciello F, et al.Controls of seismogenic zone width and subduction velocity on interplate seismicity:Insights from analog and numerical models[J].Geophysical Research Letters, 2017, 44(12):6082-6091.
[34] Oleskevich D, Hyndman R, Wang K, et al.The updip and downdip limits to great subduction earthquakes:Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile[J].Journal of Geophysical Research:Solid Earth, 1999, 104(B7):14965-14991.
[35] Brizzi S, van Zelst I, Funiciello F, et al.How sediment thickness influences subduction dynamics and seismicity[J].Journal of Geophysical Research:Solid Earth, 2020, 125(8):e2019JB018964.
[36] Lallemand S, Peyret M, van Rijsingen E, et al.Roughness characteristics of oceanic seafloor prior to subduction in relation to the seismogenic potential of subduction zones[J].Geochemistry, Geophysics, Geosystems, 2018, 19(7):2121-2146.
[37] Wang K, Bilek S.Invited review paper:Fault creep caused by subduction of rough seafloor relief[J].Tectonophysics, 2014, 610:1-24.
[38] van Rijsingen E, Lallemand S, Peyret M, et al.How subduction interface roughness influences the occurrence of large interplate earthquakes[J].Geochemistry, Geophysics, Geosystems, 2018, 19(8):2342-2370.
[39] Wang K, Bilek S.Do subducting seamounts generate or stop large earthquakes?[J].Geology, 2011, 39(9):819-822.
[40] Hasegawa A.Seismicity, subduction zone[M]//Encyclopedia of Solid Earth Geophysics.Dordrecht:Springer, 2011.
[41] Lay T, Ammon C, Kanamori H, et al.The 2009 SamoaTonga great earthquake triggered doublet[J].Nature, 2010, 466:964-968.
[42] Taylor M A J, Zheng G, Rice J R, et al.Cyclic stressing and seismicity at strong coupled subduction zones[J].Journal of Geophysical Research:Solid Earth, 1996, 101(4):8363-8381.
[43] Lay T, Kanamori H, Ammon C J, et al.The 2006 to 2007 Kuril Islands great earthquake sequence[J].Journal of Geophysical Research:Solid Earth, 2009, 114(B11):B11308.
[44] DeMets C, Gordon R G, Argus D F, et al.Effect of recent revisions to the geomagnetic time scale on estimates of current plate motions[J].Geophysical Research Letters, 1994, 21(20):2191-2194.
文章导航

/