[1] Liu W, Ge H, Chen X, et al.Fish-scale-like intercalated metal oxide-based micromotors as efficient water remediation agents[J].ACS Applied Materials & Interfaces, 2019, 11:16164-16173.
[2] de Avila B E, Angsantikul P, Li J, et al.Micromotor-enabled active drug delivery for in vivo treatment of stomach infection[J].Nature Communications, 2017, 8:272.
[3] Karshalev E, Kumar R, Jeerapan I, et al.Multistimuli-responsive camouflage swimmers[J].Chemistry of Materials, 2018, 30:1593-1601.
[4] Choi H, Yi J, Cho S H, et al.Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications[J].Biomaterials, 2021, 279:121201.
[5] Xiao Z Y, Duan S F, Xu P Z, et al.Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification[J].ACS Nano, 2020, 14(7):8658-8667.
[6] Xiang Y Y, Li B, Li B H, et al.Toward a multifunctional light-driven biomimetic mudskipper-like robot for various application scenarios[J].ACS Applied Materials & Interfaces, 2022, 14(17):20291-20302.
[7] 于晓平, 吴洁, 鞠熀先.微纳米马达在生物传感中的应用[J].化学进展, 2014, 26(10):1712-1719.
[8] Xuan M, Shao J, Gao C, et al.Self-propelled nanomotors for thermomechanically percolating cell membranes[J].Angewandte Chemie-International Edition, 2018, 57:12463-12467.
[9] 孔磊, 牟方志, 姜玉周, 等.自驱动微纳米马达的设计原理与结构简化方法[J].科学通报, 2017, 30(6):9-23.
[10] Zhang Z, Denans N, Liu Y, et al.Optogenetic manipulation of cellular communication using engineered myosin motors[J].Nature Cell Biology, 2021, 23(2):198-208.
[11] Huan C, Tao S, Yue W, et al.Deep penetration of nanolevel drugs and micrometer-level T cells promoted by nanomotors for cancer immunochemotherapy[J].Journal of the American Chemical Society, 2021, 143(31):12025-12037.
[12] Xu D, Hu J, Pan X, et al.Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions[J].ACS Nano, 2021, 15(7):11543-11554.
[13] Ji X, Yang H Y, Liu W.Multifunctional parachute-like nanomotors for enhanced skin penetration and synergistic antifungal therapy[J].ACS Nano, 2021, 15(9):14218-14228.
[14] Kingh R K, Chang H W, Yan D, et al.Influence of diet on the gut microbiome and implications for human health[J].Journal of Translational Medicine, 2017, 15(1):73.
[15] Parveen S, Subramanian K.Emerging roles of extracellular vesicles in pneumococcal infections:Immunomodulators to potential novel vaccine candidates[J].Frontiers in Cellular and Infection Microbiology, 2022, 12:836070.
[16] Thay B, Wai S N, Oscarsson J.Staphylococcus aureus atoxin-dependent induction of host cell death by membrane-derived vesicles[J].PLoS One, 2013, 8(1):e54661.
[17] Shao J, Xuan M, Zhang H, et al.Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport[J].Angewandte Chemie-International Edition, 2017, 56:12935-12939.
[18] Krishnan N, Kubiatowicz L J, Holay M, et al.Bacterial membrane vesicles for vaccine applications[J].Advanced Drug Delivery Reviews, 2022, 185:114294.
[19] Katuri J, Ma X, Stanton M M, et al.Designing microand nanoswimmers for specific applications[J].Accounts of Chemical Research, 2017, 50(1):2-11.
[20] Gillibert R, Balakrishnan G, Deshoules Q, et al.Raman tweezers for small microplastics and nanoplastics identification in seawaterl[J].Environmental Science & Technology, 2019, 53(15):9003-9013.
[21] Singh A, Sitti M.Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers[J].Advanced Healthcare Materials, 2016, 5:232-233.
[22] Stanton M M, Park B, Vilela D, et al.Magnetotactic bacteria powered biohybrids target E.coli biofilms[J].ACS Nano, 2017, 11:9968-9978.
[23] Stanton M M, Park B, Miguel-Lopez A, et al.Biohybrid microtube swimmers driven by single captured bacteria[J].Small, 2017, 13:1603679.
[24] Abdelmohsen L K E A, Peng F, Tu Y F, et al.Microand nano-motors for biomedical applications[J].Journal of Materials Chemistry B, 2014, 2(17):2395-2408.
[25] Tottori S, Zhang L, Qiu F, et al.Magnetic helical micromachines:Fabrication, controlled swimming, and cargo transport[J].Advanced Materials, 2012, 24:811-816.
[26] Mhanna R, Qiu F, Zhang L, et al.Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery[J].Small, 2014, 10:1953-1957.
[27] Soto F, Lopez-ramirez M A, Jeerapan I, et al.Rotibot:Use of rotifers as self-propelling biohybrid microcleaners[J].Advanced Healthcare Materials, 2019, 29:1900658.
[28] Park D, Park S J, Cho S, et al.Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber[J].Biotechnology and Bioengineering, 2014, 111:134-143.
[29] Sahari A, Traore M A, Scharf B E, et al.Directed transport of bacteria-based drug delivery vehicles:Bacterial chemotaxis dominates particle shape[J].Biomedical Microdevices, 2014, 16:717-725.
[30] Ceylan H, Giltinan J, Kozielski K, et al.Mobile microrobots for bioengineering applications[J].Lab on a Chip, 2017, 17(10):1705-1724.
[31] Pacheco M, Jurado-Sanchez B, Escarpa A.Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors[J].Analytical Chemistry, 2018, 90:2912-2917.
[32] Jurado-Sanchez B, Pacheco M, Rojo J, et al.Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection[J].Angewandte Chemie-International Edition, 2017, 56:6957-6961.
[33] Zhang S, Bellinger A M, Gletting D L, et al.A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices[J].Nature Materials, 2015, 14:1065-1071.
[34] Hoop M, Shen Y, Chen X, et al.Magnetically driven silver-coated nanocoils for efficient bacterial contact killing[J].Advanced Functional Materials, 2016, 26:1063-1069.
[35] Vilela D, Stanton M M, Parmar J, et al.Microbots decorated with silver nanoparticles kill bacteria in aqueous media[J].ACS Applied Materials & Interfaces, 2017, 9:22093-22100.
[36] Li J, Thamphiwatana S, Liu W, et al.Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract[J].ACS Nano, 2016, 10:9536-9542.
[37] Felfoul O, Mohammadi M, Taherkhani S, et al.Magneto aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic region[J].Nature Nanotechnology, 2016, 11:941-947.
[38] Mueller A L, Brockmueller A, Fahimi N, et al.Bacteriamediated modulatory strategies for colorectal cancer treatment[J].Biomedicines, 2022, 10(4):832.