综述

微马达和微生物前沿交叉领域研究进展

  • 王建敏 ,
  • 林岚 ,
  • 孔亮盛
展开
  • 1. 重庆医科大学附属永川医院检验科, 重庆 402160;
    2. 重庆大学附属三峡医院医学检验科, 重庆 404100
王建敏,主管技师,研究方向为分子诊断及生物分析化学,电子信箱:wangjianmin099@163.com

收稿日期: 2021-09-15

  修回日期: 2022-05-14

  网络出版日期: 2023-02-10

基金资助

重庆市科卫联合医学科研项目(2018MSXM138);临床检验诊断学教育部重点实验室开放研究课题(KF202006);重庆大学附属三峡医院科研人才专项(2022YJKYXM-038);重庆医科大学附属永川医院院级科研项目(YJLC201718)

Developments of the advanced crossing of micromotors and microorganisms

  • WANG Jianmin ,
  • LIN Lan ,
  • KONG Liangsheng
Expand
  • 1. Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China;
    2. Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Chongqing 404100, China

Received date: 2021-09-15

  Revised date: 2022-05-14

  Online published: 2023-02-10

摘要

微马达是一种可将不同形式的能量转化为动能进而实现自主运动的微型工具。近年来,该研究逐渐拓宽至微马达与微生物交叉领域。总结了微生物马达的制备、微马达在微生物的检测及体内应用等方面的研究进展。微生物的识别机制及生物相容性与微马达的自主运动能力互为补充,因此微生物马达的出现既为微马达的在体应用提供了新思路,也为微生物的检验提供了新方法。目前,受制于制备方法相对落后、运动并非完全可控、体内降解困难等限制因素,相较于其他类型的微马达,微生物马达的研究仍处于相对原始的阶段。提出了对马达新材料的研发和驱动方法的优化将会有效解决问题并赋予微生物马达更加广泛的应用前景。

本文引用格式

王建敏 , 林岚 , 孔亮盛 . 微马达和微生物前沿交叉领域研究进展[J]. 科技导报, 2023 , 41(2) : 89 -95 . DOI: 10.3981/j.issn.1000-7857.2023.02.010

Abstract

As a kind of micro-tools which could convert other kinds of energies into kinetic energy thus propel themselves moving forward, the researches of micromotors have been gradually broadened to the crossing filed with microorganisms, such as the preparation of the microorganic-micromotors (MMs) with their applications in the detections of microorganisms, sterilization and drug delivery in vivo. The sensing mechanism and biocompatibility of microorganisms were complementary to the autonomous movement of micromotors, thus their combination provided new ideas and methods for the applications of micromotors and detections for microorganisms. However, limited by the finite preparation methods, uncontrollable motion and difficult degradation, the researches of MMs were more primitive when comparing with others, while the development of new materials and the optimization of driving methods will effectively solve the problems and develop wider application prospect for MMs.

参考文献

[1] Liu W, Ge H, Chen X, et al.Fish-scale-like intercalated metal oxide-based micromotors as efficient water remediation agents[J].ACS Applied Materials & Interfaces, 2019, 11:16164-16173.
[2] de Avila B E, Angsantikul P, Li J, et al.Micromotor-enabled active drug delivery for in vivo treatment of stomach infection[J].Nature Communications, 2017, 8:272.
[3] Karshalev E, Kumar R, Jeerapan I, et al.Multistimuli-responsive camouflage swimmers[J].Chemistry of Materials, 2018, 30:1593-1601.
[4] Choi H, Yi J, Cho S H, et al.Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications[J].Biomaterials, 2021, 279:121201.
[5] Xiao Z Y, Duan S F, Xu P Z, et al.Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification[J].ACS Nano, 2020, 14(7):8658-8667.
[6] Xiang Y Y, Li B, Li B H, et al.Toward a multifunctional light-driven biomimetic mudskipper-like robot for various application scenarios[J].ACS Applied Materials & Interfaces, 2022, 14(17):20291-20302.
[7] 于晓平, 吴洁, 鞠熀先.微纳米马达在生物传感中的应用[J].化学进展, 2014, 26(10):1712-1719.
[8] Xuan M, Shao J, Gao C, et al.Self-propelled nanomotors for thermomechanically percolating cell membranes[J].Angewandte Chemie-International Edition, 2018, 57:12463-12467.
[9] 孔磊, 牟方志, 姜玉周, 等.自驱动微纳米马达的设计原理与结构简化方法[J].科学通报, 2017, 30(6):9-23.
[10] Zhang Z, Denans N, Liu Y, et al.Optogenetic manipulation of cellular communication using engineered myosin motors[J].Nature Cell Biology, 2021, 23(2):198-208.
[11] Huan C, Tao S, Yue W, et al.Deep penetration of nanolevel drugs and micrometer-level T cells promoted by nanomotors for cancer immunochemotherapy[J].Journal of the American Chemical Society, 2021, 143(31):12025-12037.
[12] Xu D, Hu J, Pan X, et al.Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions[J].ACS Nano, 2021, 15(7):11543-11554.
[13] Ji X, Yang H Y, Liu W.Multifunctional parachute-like nanomotors for enhanced skin penetration and synergistic antifungal therapy[J].ACS Nano, 2021, 15(9):14218-14228.
[14] Kingh R K, Chang H W, Yan D, et al.Influence of diet on the gut microbiome and implications for human health[J].Journal of Translational Medicine, 2017, 15(1):73.
[15] Parveen S, Subramanian K.Emerging roles of extracellular vesicles in pneumococcal infections:Immunomodulators to potential novel vaccine candidates[J].Frontiers in Cellular and Infection Microbiology, 2022, 12:836070.
[16] Thay B, Wai S N, Oscarsson J.Staphylococcus aureus atoxin-dependent induction of host cell death by membrane-derived vesicles[J].PLoS One, 2013, 8(1):e54661.
[17] Shao J, Xuan M, Zhang H, et al.Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport[J].Angewandte Chemie-International Edition, 2017, 56:12935-12939.
[18] Krishnan N, Kubiatowicz L J, Holay M, et al.Bacterial membrane vesicles for vaccine applications[J].Advanced Drug Delivery Reviews, 2022, 185:114294.
[19] Katuri J, Ma X, Stanton M M, et al.Designing microand nanoswimmers for specific applications[J].Accounts of Chemical Research, 2017, 50(1):2-11.
[20] Gillibert R, Balakrishnan G, Deshoules Q, et al.Raman tweezers for small microplastics and nanoplastics identification in seawaterl[J].Environmental Science & Technology, 2019, 53(15):9003-9013.
[21] Singh A, Sitti M.Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers[J].Advanced Healthcare Materials, 2016, 5:232-233.
[22] Stanton M M, Park B, Vilela D, et al.Magnetotactic bacteria powered biohybrids target E.coli biofilms[J].ACS Nano, 2017, 11:9968-9978.
[23] Stanton M M, Park B, Miguel-Lopez A, et al.Biohybrid microtube swimmers driven by single captured bacteria[J].Small, 2017, 13:1603679.
[24] Abdelmohsen L K E A, Peng F, Tu Y F, et al.Microand nano-motors for biomedical applications[J].Journal of Materials Chemistry B, 2014, 2(17):2395-2408.
[25] Tottori S, Zhang L, Qiu F, et al.Magnetic helical micromachines:Fabrication, controlled swimming, and cargo transport[J].Advanced Materials, 2012, 24:811-816.
[26] Mhanna R, Qiu F, Zhang L, et al.Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery[J].Small, 2014, 10:1953-1957.
[27] Soto F, Lopez-ramirez M A, Jeerapan I, et al.Rotibot:Use of rotifers as self-propelling biohybrid microcleaners[J].Advanced Healthcare Materials, 2019, 29:1900658.
[28] Park D, Park S J, Cho S, et al.Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber[J].Biotechnology and Bioengineering, 2014, 111:134-143.
[29] Sahari A, Traore M A, Scharf B E, et al.Directed transport of bacteria-based drug delivery vehicles:Bacterial chemotaxis dominates particle shape[J].Biomedical Microdevices, 2014, 16:717-725.
[30] Ceylan H, Giltinan J, Kozielski K, et al.Mobile microrobots for bioengineering applications[J].Lab on a Chip, 2017, 17(10):1705-1724.
[31] Pacheco M, Jurado-Sanchez B, Escarpa A.Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors[J].Analytical Chemistry, 2018, 90:2912-2917.
[32] Jurado-Sanchez B, Pacheco M, Rojo J, et al.Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection[J].Angewandte Chemie-International Edition, 2017, 56:6957-6961.
[33] Zhang S, Bellinger A M, Gletting D L, et al.A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices[J].Nature Materials, 2015, 14:1065-1071.
[34] Hoop M, Shen Y, Chen X, et al.Magnetically driven silver-coated nanocoils for efficient bacterial contact killing[J].Advanced Functional Materials, 2016, 26:1063-1069.
[35] Vilela D, Stanton M M, Parmar J, et al.Microbots decorated with silver nanoparticles kill bacteria in aqueous media[J].ACS Applied Materials & Interfaces, 2017, 9:22093-22100.
[36] Li J, Thamphiwatana S, Liu W, et al.Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract[J].ACS Nano, 2016, 10:9536-9542.
[37] Felfoul O, Mohammadi M, Taherkhani S, et al.Magneto aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic region[J].Nature Nanotechnology, 2016, 11:941-947.
[38] Mueller A L, Brockmueller A, Fahimi N, et al.Bacteriamediated modulatory strategies for colorectal cancer treatment[J].Biomedicines, 2022, 10(4):832.
文章导航

/