[1] Clery D.Golden eye, a new space telescope makes a spectacular debut after a troubled gestation[J].Science, 2022, 378(6625):1160-1161.
[2] Witze A.Nature's 10 people who helped shape science in 2022[J].Nature, 2022, 612:611-625.
[3] Welch B, Coe D, Diego J M, et al.A highly magnified star at redshift 6.2[J].Nature, 2022, 603(7903):815-818.
[4] Hubble reaches new milestone in mystery of universe's expansion rate[EB/OL].[2022-12-15].https://www.nasa.gov/feature/goddard/2022/hubble-reaches-new-milestonein-mystery-of-universes-expansion-rate.
[5] Riess A G, Yuan W, Macri L M, et al.A comprehensive measurement of the local value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team[J].The Astrophysical Journal Letters, 2022, 934:1.
[6] 范全林, 时蓬, 王琴, 等.斯皮策空间望远镜实现最大化科学产出[J].科技导报, 2020, 38(20):113-122.
[7] König O, Wilms J, Arcodia R, et al.X-ray detection of a nova in the fireball phase[J].Nature, 2022, 605:248-250.
[8] Fang K, Kerr M, Blandford R, et al.Evidence for PeV proton acceleration from Fermi-LAT observations of SNR G 106.3+2.7[J].Physical Review Letters, 2022, 129(7):071101.
[9] DAMPE Collaboration.Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE[J].Science Bulletin, 2022, 67(21):2162-2166.
[10] Fujimoto S, Brammer G B, Watson D, et al.A dusty compact object bridging galaxies and quasars at cosmic dawn[J].Nature, 604:261-265.
[11] Liodakis I, Marscher A P, Agudo I, et al.Polarized blazar X-rays imply particle acceleration in shocks[J].Nature, 2022, 611:677-681.
[12] Xie F, Di M A, La M F, et al.Vela pulsar wind nebula X-rays are polarized to near the synchrotron limit[J].Nature, 2022, 612:658-660.
[13] Ling-Da K, Zhang S, Zhang S N, et al.Insight-HXMT discovery of the highest-energy CRSF from the first galactic ultraluminous X-Ray pulsar Swift J0243.6+6124[J].The Astrophysical Journal Letters, 2022, 933:L3.
[14] Neutron star HESS J1731-347 may be a ‘strange’ star[EB/OL].[2022-12-17].https://phys.org/news/2022-10-neutron-star-hess-j1731-strange.html.
[15] NASA's NuSTAR mission celebrates 10 years studying the X-Ray Universe[EB/OL].[2022-12-15].https://www.nasa.gov/feature/jpl/nasa-s-nustar-mission-celebrates-10-years-studying-the-x-ray-universe.
[16] NASA's NuSTAR helps solve riddle of black Hole Spin[EB/OL].[2022-12-17].https://www.jpl.nasa.gov/news/nasas-nustar-helps-solve-riddle-of-black-hole-spin.
[17] DAMPE Collaboration.Search for gamma-ray spectral lines with the DArk Matter Particle Explorer[J].Science Bulletin, 2022, 67(7):679-684.
[18] Xiang M, Rix H W.A time-resolved picture of our Milky Way's early formation history[J].Nature, 2022, 603:599-603.
[19] Gaia archive[EB/OL].[2022-12-17].https://gea.esac.esa.int/archive/.
[20] Gaia data release 3 papers[EB/OL].[2022-12-17].https://www.cosmos.esa.int/web/gaia/dr3-papers.
[21] Kipping D, Bryson S, Burke C, et al.An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i[J].Nature Astronomy, 2022, 6:367-380.
[22] 白青江, 范全林, 时蓬, 等.关于新一代旗舰型科学卫星 WFIRST发展的分析[J].科技导报, 2021, 39(11):38-45.
[23] 王赤, 时蓬, 宋婷婷, 等.远航2050:欧洲空间科学规划及启示[J].科技导报, 2022, 40(4):6-15.
[24] Currie T, Lawson K, Schneider G, et al.Images of embedded Jovian planet formation at a wide separation around AB Aurigae[J].Nature Astronomy, 2022, 6:751-759.
[25] JWST Transiting Exoplanet Community Early Release Science Team.Identification of carbon dioxide in an exoplanet atmosphere[J].Nature, 2022, doi:10.1038/s41586-022-05269-w.
[26] Carter A L, Hinkley S, Kammerer J, et al.The JWST early release science Pprogram for direct observations of exoplanetary systems I:High contrast imaging of the exoplanet HIP 65426 b from 2-16μm[J/OL].[2022-12-17].https://arxiv.org/abs/2208.14990.
[27] Liu Z Y, Zong Q G, Rankin R, et al.Simultaneous macroscale and microscale wave-ion interaction in nearearth space plasmas[J].Nature Communications, 2022, 13:5593.
[28] Wang R, Wang S, Lu Q, et al.Direct observation of turbulent magnetic reconnection in the solar wind[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01818-5.
[29] Liu Y H, Cassak P, Li X, et al.First-principles theory of the rate of magnetic reconnection in magnetospheric and solar plasmas[J].Communications Physics, 2022, 5(1):1-9.
[30] Gan W Q, Feng L, Su Y.A Chinese solar observatory in space[J].Nature Astronomy, 2022, 6:165.
[31] Fang C, Ding M, Li C, et al.Editorial[J].Science China Physics, Mechanics & Astronomy, 2022, 65:289601.
[32] Zhou C, Tang H, Li X, et al.Chang'E-5 samples reveal high water content in lunar minerals[J].Nature Communications, 2022, 13:5336.
[33] Xua Y, Tian H C, Zhang C, et al.High abundance of solar wind-derived water in lunar soils from the middle latitude[J].Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2214395119.
[34] Lin H L, Li S, Xu R, et al.In situ detection of water on the Moon by the Chang'E-5 lander[J].Science Advances, 2022, 8(1), doi:10.1126/sciadv.abl9174.
[35] Changesite-(Y)[EB/OL].[2022-12-20].https://www.mindat.org/min-470369.html.
[36] 时蓬, 白青江, 王琴, 等.2021年空间科学与深空探测热点回眸[J].科技导报, 2022, 40(1):64-95.
[37] Su B, Yuan J Y, Chen Y, et al.Fusible mantle cumulates trigger young mare volcanism on the cooling Moon[J].Science Advances, 2022, 8(42), doi:10.1126/sciadv.abn2103.
[38] Zeng X, Li X, Liu J.Exotic clasts in Chang'e-5 regolith indicative of unexplored terrane on the Moon[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01840-7.
[39] Yue Z, Di K, Wan W, et al.Updated lunar cratering chronology model with the radiometric age of Chang'e-5 samples[J].Nature Astronomy, 2022, 6:541-545.
[40] Long T, Qian Y Q, Norman M D, et al.Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang'e-5 glass beads[J].Science Advances, 2022, 8(39), doi:10.1126/sciadv.abq2542.
[41] Yao Y F, Wang L, Zhu X, et al.Extraterrestrial photosynthesis by Chang' E-5 lunar soil[J].Joule, 2022, 6(5):1008-1014.
[42] Luo P W, Zhang X P, Fu S, et al.First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang'E-4 mission[J].Science Advance, 2022, 8(2), doi:10.1126/sciadv.abk1760.
[43] Liu J, Li C, Zhang R, et al.Geomorphic contexts and science focus of the Zhurong landing site on Mars[J].Nature Astronomy, 2022, 6:65-71.
[44] Ding L, Zhou R, Yu T, et al.Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia[J].Nature Geoscience, 2022, 15:171-176.
[45] Li C, Zheng Y, Wang X, et al.Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J].Nature, 2022, 610:308-312.
[46] Liu Y, Wu X, Zhao Y Y, et al.Zhurong reveals recent aqueous activities in Utopia Planitia, Mars[J].Science Advances, 2022, 8(19), doi:https://doi:10.1126/sciadv.abn8555.
[47] Fu S, Ding Z Y, Zhang Y J, et al.First report of a solar energetic particle event observed by China's Tianwen-1 mission in transit to Mars[J].The Astrophysical Journal Letters, 2022, 934(1), doi:10.3847/2041-8213/ac80f5.
[48] First solar wind plasma observations from the Tianwen-1 mission[EB/OL].[2022-12-20].https://eos.org/editorhighlights/first-solar-wind-plasma-observations-fromthe-tianwen-1-mission.
[49] Zhang A B, Kong L G, Li W Y, et al.Tianwen-1 MINPA observations in the solar wind[J].Earth and Planetary Physics, 2022, 6(1):1-9.
[50] Fan K, Yan L, Wei Y, et al.The solar wind plasma upstream of Mars observed by Tianwen-1:Comparison with Mars Express and MAVEN[J].Science China, Earth Sciences, 2022, 65:759-768.
[51] House C H, Wong G M, Webster C R, et al.Depleted carbon isotope compositions observed at Gale crater, Mars[J].Proceedings of the National Academy of Sciences, 2022, 119(4):e2115651119.
[52] NASA's InSight records monster quake on Mars[EB/OL].[2022-12-16].https://www.nasa.gov/feature/jpl/nasa-sinsight-records-monster-quake-on-mars.
[53] Yang Y J, Chen X F.A seismic meteor strike on Mars[J].Science, 2022, 378(6618):360-361.
[54] Kim D, Banerdt W B, Ceylan S, et al.Surface waves and crustal structure on Mars[J].Science, 2022, 378:417-421.
[55] Posiolova L V, Lognonné P, Banerdt W B, et al.Largest recent impact craters on Mars:Orbital imaging and surface seismic co-investigation[J].Science, 2022, 378:412-417.
[56] Stähler S C, Mittelholz A, Perrin C, et al.Tectonics of Cerberus Fossae unveiled by marsquakes[J].Nature Astronomy, 2022, 6:1376-1386.
[57] Broquet A, Andrews-Hanna J C.Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01836-3.
[58] Mitrofanov I, Malakhov A, Djachkova M, et al.The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars[J].Icarus, 2022, 374:114805.
[59] Riu L, Carter J, Poulet F.The M3 project:3-Global abundance distribution of hydrated silicates at Mars[J].Icarus, 2022, 374:114809.
[60] Carter J, Riu L, Poulet F, et al.A Mars orbital catalog of aqueous alteration signatures (MOCAAS)[J].Icarus,2022, 389:115164.
[61] Yokoyama T, Nagashima K, Nakai I, et al.Samples returned from the asteroid Ryugu are similar to Ivunatype carbonaceous meteorites[J].Science, 2022, doi:10.1126/science.abn7850.
[62] Nakamura E, Kobayashi K, Tanaka R, et al.On the origin and evolution of the asteroid Ryugu:A comprehensive geochemical perspective[J].Proceedings of the Japan Academy, Series B, 2022, 98(6):227-282.
[63] Okazaki R, Miura Y N, Takano Y, et al.First asteroid gas sample delivered by the Hayabusa2 mission:A treasure box from Ryugu[J].Science Advances, 2022, doi:10.1126/sciadv.abo7239.
[64] Okazaki Y, Marty B, Busemann H, et al.Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution[J].Science, 2022, doi:10.1126/science.abo0431.
[65] Hopp T, Dauphas N, Abe Y, et al.Ryugu's nucleosynthetic heritage from the outskirts of the Solar System[J].Science Advances, 2022, doi:10.1126/sciadv.add8141.
[66] Nakamura T, Matsumotok M, Amano K, et al.Formation and evolution of carbonaceous asteroid Ryugu:Direct evidence from returned samples[J].Science, 2022, doi:10.1126/science.abn8671.
[67] Noguchi T, Matsumoto T, Miyake A, et al.A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01841-6.
[68] Lauretta D S, Adam C D, Allen A J, et al.Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu[J].Science, 2022, 377(6603):285-291.
[69] Walsh K J, Ronald-Louis B, Erica R J, et al.Near-zero cohesion and loose packing of Bennu's near subsurface revealed by spacecraft contact[J].Science Advance, 2022, 8(27), doi:10.1126/sciadv.abm6229.
[70] NASA's DART mission hits asteroid in first-ever planetary defense test[EB/OL].[2022-12-20].https://www.nasa.gov/press-release/nasa-s-dart-mission-hits-asteroid-in-first-ever-planetary-defense-test/.
[71] Singer K N, White O L, Schmitt B, et al.Large-scale cryovolcanic resurfacing on Pluto[J].Nature Communications, 2022, 13:1542.
[72] International sea level satellite takes over from predecessor[EB/OL].[2022-12-22].https://www.nasa.gov/feature/jpl/international-sea-level-satellite-takes-over-frompredecessor.
[73] Vasco D W, Kim K H, Farr T G, et al.Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California[J].Scientific Reports, 2022, 12:3867.
[74] Greene C A, Gardner A S, Schlegel N J, et al.Antarctic calving loss rivals ice-shelf thinning[J].Nature, 2022, doi:10.1038/s41586-022-05037-w.
[75] Nilsson J, Gardner A S, Paolo F S.Elevation change of the Antarctic Ice Sheet:1985 to 2020[J].Earth System Science Data, 2022(14):3573-3598.
[76] Li B, Cao Y, Li Y H, et al.Quantum state transfer over 1200 km assisted by prior distributed entanglement[J].Physical Review Letters, 2022, 128(17), doi:10.1103/PhysRevLett.128.170501.
[77] Lu C Y, Cao Y, Peng C Z, et al.Micius quantum experiments in space[J].Reviews of Modern Physics, 2022, 94:035001.
[78] Gu Y D.The China Space Station:A new opportunity for space science[J].National Science Review, 2022, 9(1):nwab219.
[79] Let's explore space station science[EB/OL].[2022-12-22].https://www.nasa.gov/mission_pages/station/research/experiments/explorer/index.html#.
[80] Baque M, Backhaus T, Meesse J, et al.Biosignature stability in space enables their use for life detection on Mars[J].Science Advances, 2022, 8(36), doi:10.1126/sciadv.abn7412.
[81] Cooley S S, Fisher J B, Goldsmith G R.Convergence in water use efficiency within plant functional types across contrasting climates[J].Nature Plants, 2022, 8:341-345.
[82] Miguel A S D, Bennie J, Rosenfeld E, et al.Environmental risks from artificial nighttime lighting widespread and increasing across Europe[J].Science Advances, 2022, 8(37), doi:10.1126/sciadv.abl6891.
[83] Trudel G, Shahin N, Ramsay T, et al.Hemolysis contributes to anemia during long-duration space flight[J].Nature Medicine, 2022, 28:59-62.
[84] Carollo R A, Aveline D C, Rhyno B, et al.Observation of ultracold atomic bubbles in orbital microgravity[J].Nature, 606:281-286.
[85] NASA's big 2022:Historic moon mission, Webb telescope images, more[EB/OL].[2022-12-23].https://www.nasa.gov/press-release/nasa-s-big-2022-historic-moonmission-webb-telescope-images-more.
[86] National Aeronautics and Space Administration, Canadian Space Agency, European Space Agency, et al.International space station benefits for humanity 2022[R].Huntsville:International Space Station Program Science Forum, 2022.
[87] Aguilar-Benitez M, Cavasonza L A, Ambrosi G, et al.Properties of daily helium fluxes[J].Physical Review Letters, 2022, 128(23):231102.
[88] 王赤.加速空间科学发展建设航天强国——中科院科研院所负责人谈"四个面向"[N].科技日报, 2022-12-29(5).
[89] Wang C, Song T T, Shi P, et al.China's space science pProgram (2025-2030):Strategic priority program on space science (III)[J].Chinese Journal of Space Science, 2022, 42(4):514-518.
[90] 范全林, 宋婷婷, 时蓬, 等.空间科学强国指标体系研究及其启示[J].中国科学院院刊, 2022, 37(8):1076-1087.
[91] 王赤.加速空间科学发展建设世界科技强国[J].红旗文稿, 2022, 19:16-19.
[92] National Aeronautics and Space Administration.Science 2020-2024:A vision for scientific excellence in 2021[R].Washington, DC:National Aeronautics and Space Administration, 2022.
[93] National Aeronautics and Space Administration.Moon to Mars objectives[R].Washington, DC:National Aeronautics and Space Administration, 2022.
[94] Earth orbit, Moon, Mars:ESA's ambitious roadmap[EB/OL].[2022-12-20].https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Earth_orbit_Moon _Mars_ESA_s_ambitious_roadmap.
[95] 王赤, 白青江, 时蓬, 等.美国行星科学2023-2032年规划及启示[J].科技导报, 2022, 40(15):6-15.
[96] NASA to start astrophysics probe program[EB/OL].[2022-12-05].https://spacenews.com/nasa-to-start-astrophysics-probe-program/.
[97] 王赤, 宋婷婷, 时蓬, 等.10年见证中国空间科学发展进入新时代[J].科技导报, 2022, 40(19):6-14.
[98] 袁为民, 张臣, 陈勇, 等.爱因斯坦探针:探索变幻多姿的 X射线宇宙[J].中国科学:物理学力学天文学, 2018, 48(3):039502.