专题:2022年科技热点回眸

2022年空间科学与深空探测热点回眸

  • 王赤 ,
  • 时蓬 ,
  • 白青江 ,
  • 王琴 ,
  • 范全林
展开
  • 中国科学院国家空间科学中心空间科学与深空探测规划论证中心, 北京 100190
王赤,中国科学院院士,研究员,研究方向为空间物理和空间天气学,电子信箱:cw@nssc.ac.cn

收稿日期: 2022-12-30

  修回日期: 2023-01-05

  网络出版日期: 2023-02-10

基金资助

中国科学院战略性先导科技专项(Y329181AAS);中国科学院学部咨询评议项目(E22191A11S);中国科学院光电空天-重大创新领域战略规划研究项目(Y82131A28S)

Review of 2022 global space science advances

  • WANG Chi ,
  • SHI Peng ,
  • BAI Qingjiang ,
  • WANG Qin ,
  • FAN Quanlin
Expand
  • Space Science and Deep Space Exploration Study Center, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2022-12-30

  Revised date: 2023-01-05

  Online published: 2023-02-10

摘要

2022年世界空间科学和探索热点频现。按空间天文、日球层物理、行星科学、空间地球科学和微重力物理与空间生命科学五大领域,梳理了全球空间科学重要进展,韦布空间望远镜及其首批成果成为年度最大亮点;盘点了各国空间科学任务及其代表性成果,中国空间科学先导专项科学卫星系列以及探月工程“嫦娥五号”样品的研究突破令人瞩目。载人航天是空间科学与应用的重要平台,中国空间站建成引起世界关注。点评了各国的空间科学中长期规划和国家空间战略相关情况,展望了2023年即将发射升空的空间科学新任务。

本文引用格式

王赤 , 时蓬 , 白青江 , 王琴 , 范全林 . 2022年空间科学与深空探测热点回眸[J]. 科技导报, 2023 , 41(1) : 79 -102 . DOI: 10.3981/j.issn.1000-7857.2023.01.005

Abstract

Hot spots in global space science and exploration emerged frequently in 2022. This paper summarizes significant accomplishments in the five disciplines of space science, namely astrophysics, heliophysics, planetary science, earth science, and biological and physical sciences in space. James Webb Space Telescope and its first batch of groundbreaking images became the highlight of the year. The representative achievements of space science missions of various countries are listed, in which the breakthroughs by missions under CAS's Strategic Priority Program on Space Science and the research of Chang'e-5 sample are particularly impressive. Manned spaceflight has provided an important platform for space science and exploration. The construction of China's space station (CSS) completed at late 2022, which has attracted worldwide attention, and CSS is preparing to host 1,000 scientific experiments in the coming 10 years. The space science long-term planning and national space strategies of space powers are presented, and the space missions in 2023 are also prospected in the end of the review.

参考文献

[1] Clery D.Golden eye, a new space telescope makes a spectacular debut after a troubled gestation[J].Science, 2022, 378(6625):1160-1161.
[2] Witze A.Nature's 10 people who helped shape science in 2022[J].Nature, 2022, 612:611-625.
[3] Welch B, Coe D, Diego J M, et al.A highly magnified star at redshift 6.2[J].Nature, 2022, 603(7903):815-818.
[4] Hubble reaches new milestone in mystery of universe's expansion rate[EB/OL].[2022-12-15].https://www.nasa.gov/feature/goddard/2022/hubble-reaches-new-milestonein-mystery-of-universes-expansion-rate.
[5] Riess A G, Yuan W, Macri L M, et al.A comprehensive measurement of the local value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team[J].The Astrophysical Journal Letters, 2022, 934:1.
[6] 范全林, 时蓬, 王琴, 等.斯皮策空间望远镜实现最大化科学产出[J].科技导报, 2020, 38(20):113-122.
[7] König O, Wilms J, Arcodia R, et al.X-ray detection of a nova in the fireball phase[J].Nature, 2022, 605:248-250.
[8] Fang K, Kerr M, Blandford R, et al.Evidence for PeV proton acceleration from Fermi-LAT observations of SNR G 106.3+2.7[J].Physical Review Letters, 2022, 129(7):071101.
[9] DAMPE Collaboration.Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE[J].Science Bulletin, 2022, 67(21):2162-2166.
[10] Fujimoto S, Brammer G B, Watson D, et al.A dusty compact object bridging galaxies and quasars at cosmic dawn[J].Nature, 604:261-265.
[11] Liodakis I, Marscher A P, Agudo I, et al.Polarized blazar X-rays imply particle acceleration in shocks[J].Nature, 2022, 611:677-681.
[12] Xie F, Di M A, La M F, et al.Vela pulsar wind nebula X-rays are polarized to near the synchrotron limit[J].Nature, 2022, 612:658-660.
[13] Ling-Da K, Zhang S, Zhang S N, et al.Insight-HXMT discovery of the highest-energy CRSF from the first galactic ultraluminous X-Ray pulsar Swift J0243.6+6124[J].The Astrophysical Journal Letters, 2022, 933:L3.
[14] Neutron star HESS J1731-347 may be a ‘strange’ star[EB/OL].[2022-12-17].https://phys.org/news/2022-10-neutron-star-hess-j1731-strange.html.
[15] NASA's NuSTAR mission celebrates 10 years studying the X-Ray Universe[EB/OL].[2022-12-15].https://www.nasa.gov/feature/jpl/nasa-s-nustar-mission-celebrates-10-years-studying-the-x-ray-universe.
[16] NASA's NuSTAR helps solve riddle of black Hole Spin[EB/OL].[2022-12-17].https://www.jpl.nasa.gov/news/nasas-nustar-helps-solve-riddle-of-black-hole-spin.
[17] DAMPE Collaboration.Search for gamma-ray spectral lines with the DArk Matter Particle Explorer[J].Science Bulletin, 2022, 67(7):679-684.
[18] Xiang M, Rix H W.A time-resolved picture of our Milky Way's early formation history[J].Nature, 2022, 603:599-603.
[19] Gaia archive[EB/OL].[2022-12-17].https://gea.esac.esa.int/archive/.
[20] Gaia data release 3 papers[EB/OL].[2022-12-17].https://www.cosmos.esa.int/web/gaia/dr3-papers.
[21] Kipping D, Bryson S, Burke C, et al.An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i[J].Nature Astronomy, 2022, 6:367-380.
[22] 白青江, 范全林, 时蓬, 等.关于新一代旗舰型科学卫星 WFIRST发展的分析[J].科技导报, 2021, 39(11):38-45.
[23] 王赤, 时蓬, 宋婷婷, 等.远航2050:欧洲空间科学规划及启示[J].科技导报, 2022, 40(4):6-15.
[24] Currie T, Lawson K, Schneider G, et al.Images of embedded Jovian planet formation at a wide separation around AB Aurigae[J].Nature Astronomy, 2022, 6:751-759.
[25] JWST Transiting Exoplanet Community Early Release Science Team.Identification of carbon dioxide in an exoplanet atmosphere[J].Nature, 2022, doi:10.1038/s41586-022-05269-w.
[26] Carter A L, Hinkley S, Kammerer J, et al.The JWST early release science Pprogram for direct observations of exoplanetary systems I:High contrast imaging of the exoplanet HIP 65426 b from 2-16μm[J/OL].[2022-12-17].https://arxiv.org/abs/2208.14990.
[27] Liu Z Y, Zong Q G, Rankin R, et al.Simultaneous macroscale and microscale wave-ion interaction in nearearth space plasmas[J].Nature Communications, 2022, 13:5593.
[28] Wang R, Wang S, Lu Q, et al.Direct observation of turbulent magnetic reconnection in the solar wind[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01818-5.
[29] Liu Y H, Cassak P, Li X, et al.First-principles theory of the rate of magnetic reconnection in magnetospheric and solar plasmas[J].Communications Physics, 2022, 5(1):1-9.
[30] Gan W Q, Feng L, Su Y.A Chinese solar observatory in space[J].Nature Astronomy, 2022, 6:165.
[31] Fang C, Ding M, Li C, et al.Editorial[J].Science China Physics, Mechanics & Astronomy, 2022, 65:289601.
[32] Zhou C, Tang H, Li X, et al.Chang'E-5 samples reveal high water content in lunar minerals[J].Nature Communications, 2022, 13:5336.
[33] Xua Y, Tian H C, Zhang C, et al.High abundance of solar wind-derived water in lunar soils from the middle latitude[J].Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2214395119.
[34] Lin H L, Li S, Xu R, et al.In situ detection of water on the Moon by the Chang'E-5 lander[J].Science Advances, 2022, 8(1), doi:10.1126/sciadv.abl9174.
[35] Changesite-(Y)[EB/OL].[2022-12-20].https://www.mindat.org/min-470369.html.
[36] 时蓬, 白青江, 王琴, 等.2021年空间科学与深空探测热点回眸[J].科技导报, 2022, 40(1):64-95.
[37] Su B, Yuan J Y, Chen Y, et al.Fusible mantle cumulates trigger young mare volcanism on the cooling Moon[J].Science Advances, 2022, 8(42), doi:10.1126/sciadv.abn2103.
[38] Zeng X, Li X, Liu J.Exotic clasts in Chang'e-5 regolith indicative of unexplored terrane on the Moon[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01840-7.
[39] Yue Z, Di K, Wan W, et al.Updated lunar cratering chronology model with the radiometric age of Chang'e-5 samples[J].Nature Astronomy, 2022, 6:541-545.
[40] Long T, Qian Y Q, Norman M D, et al.Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang'e-5 glass beads[J].Science Advances, 2022, 8(39), doi:10.1126/sciadv.abq2542.
[41] Yao Y F, Wang L, Zhu X, et al.Extraterrestrial photosynthesis by Chang' E-5 lunar soil[J].Joule, 2022, 6(5):1008-1014.
[42] Luo P W, Zhang X P, Fu S, et al.First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang'E-4 mission[J].Science Advance, 2022, 8(2), doi:10.1126/sciadv.abk1760.
[43] Liu J, Li C, Zhang R, et al.Geomorphic contexts and science focus of the Zhurong landing site on Mars[J].Nature Astronomy, 2022, 6:65-71.
[44] Ding L, Zhou R, Yu T, et al.Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia[J].Nature Geoscience, 2022, 15:171-176.
[45] Li C, Zheng Y, Wang X, et al.Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J].Nature, 2022, 610:308-312.
[46] Liu Y, Wu X, Zhao Y Y, et al.Zhurong reveals recent aqueous activities in Utopia Planitia, Mars[J].Science Advances, 2022, 8(19), doi:https://doi:10.1126/sciadv.abn8555.
[47] Fu S, Ding Z Y, Zhang Y J, et al.First report of a solar energetic particle event observed by China's Tianwen-1 mission in transit to Mars[J].The Astrophysical Journal Letters, 2022, 934(1), doi:10.3847/2041-8213/ac80f5.
[48] First solar wind plasma observations from the Tianwen-1 mission[EB/OL].[2022-12-20].https://eos.org/editorhighlights/first-solar-wind-plasma-observations-fromthe-tianwen-1-mission.
[49] Zhang A B, Kong L G, Li W Y, et al.Tianwen-1 MINPA observations in the solar wind[J].Earth and Planetary Physics, 2022, 6(1):1-9.
[50] Fan K, Yan L, Wei Y, et al.The solar wind plasma upstream of Mars observed by Tianwen-1:Comparison with Mars Express and MAVEN[J].Science China, Earth Sciences, 2022, 65:759-768.
[51] House C H, Wong G M, Webster C R, et al.Depleted carbon isotope compositions observed at Gale crater, Mars[J].Proceedings of the National Academy of Sciences, 2022, 119(4):e2115651119.
[52] NASA's InSight records monster quake on Mars[EB/OL].[2022-12-16].https://www.nasa.gov/feature/jpl/nasa-sinsight-records-monster-quake-on-mars.
[53] Yang Y J, Chen X F.A seismic meteor strike on Mars[J].Science, 2022, 378(6618):360-361.
[54] Kim D, Banerdt W B, Ceylan S, et al.Surface waves and crustal structure on Mars[J].Science, 2022, 378:417-421.
[55] Posiolova L V, Lognonné P, Banerdt W B, et al.Largest recent impact craters on Mars:Orbital imaging and surface seismic co-investigation[J].Science, 2022, 378:412-417.
[56] Stähler S C, Mittelholz A, Perrin C, et al.Tectonics of Cerberus Fossae unveiled by marsquakes[J].Nature Astronomy, 2022, 6:1376-1386.
[57] Broquet A, Andrews-Hanna J C.Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01836-3.
[58] Mitrofanov I, Malakhov A, Djachkova M, et al.The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars[J].Icarus, 2022, 374:114805.
[59] Riu L, Carter J, Poulet F.The M3 project:3-Global abundance distribution of hydrated silicates at Mars[J].Icarus, 2022, 374:114809.
[60] Carter J, Riu L, Poulet F, et al.A Mars orbital catalog of aqueous alteration signatures (MOCAAS)[J].Icarus,2022, 389:115164.
[61] Yokoyama T, Nagashima K, Nakai I, et al.Samples returned from the asteroid Ryugu are similar to Ivunatype carbonaceous meteorites[J].Science, 2022, doi:10.1126/science.abn7850.
[62] Nakamura E, Kobayashi K, Tanaka R, et al.On the origin and evolution of the asteroid Ryugu:A comprehensive geochemical perspective[J].Proceedings of the Japan Academy, Series B, 2022, 98(6):227-282.
[63] Okazaki R, Miura Y N, Takano Y, et al.First asteroid gas sample delivered by the Hayabusa2 mission:A treasure box from Ryugu[J].Science Advances, 2022, doi:10.1126/sciadv.abo7239.
[64] Okazaki Y, Marty B, Busemann H, et al.Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution[J].Science, 2022, doi:10.1126/science.abo0431.
[65] Hopp T, Dauphas N, Abe Y, et al.Ryugu's nucleosynthetic heritage from the outskirts of the Solar System[J].Science Advances, 2022, doi:10.1126/sciadv.add8141.
[66] Nakamura T, Matsumotok M, Amano K, et al.Formation and evolution of carbonaceous asteroid Ryugu:Direct evidence from returned samples[J].Science, 2022, doi:10.1126/science.abn8671.
[67] Noguchi T, Matsumoto T, Miyake A, et al.A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu[J].Nature Astronomy, 2022, doi:https://doi.org/10.1038/s41550-022-01841-6.
[68] Lauretta D S, Adam C D, Allen A J, et al.Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu[J].Science, 2022, 377(6603):285-291.
[69] Walsh K J, Ronald-Louis B, Erica R J, et al.Near-zero cohesion and loose packing of Bennu's near subsurface revealed by spacecraft contact[J].Science Advance, 2022, 8(27), doi:10.1126/sciadv.abm6229.
[70] NASA's DART mission hits asteroid in first-ever planetary defense test[EB/OL].[2022-12-20].https://www.nasa.gov/press-release/nasa-s-dart-mission-hits-asteroid-in-first-ever-planetary-defense-test/.
[71] Singer K N, White O L, Schmitt B, et al.Large-scale cryovolcanic resurfacing on Pluto[J].Nature Communications, 2022, 13:1542.
[72] International sea level satellite takes over from predecessor[EB/OL].[2022-12-22].https://www.nasa.gov/feature/jpl/international-sea-level-satellite-takes-over-frompredecessor.
[73] Vasco D W, Kim K H, Farr T G, et al.Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California[J].Scientific Reports, 2022, 12:3867.
[74] Greene C A, Gardner A S, Schlegel N J, et al.Antarctic calving loss rivals ice-shelf thinning[J].Nature, 2022, doi:10.1038/s41586-022-05037-w.
[75] Nilsson J, Gardner A S, Paolo F S.Elevation change of the Antarctic Ice Sheet:1985 to 2020[J].Earth System Science Data, 2022(14):3573-3598.
[76] Li B, Cao Y, Li Y H, et al.Quantum state transfer over 1200 km assisted by prior distributed entanglement[J].Physical Review Letters, 2022, 128(17), doi:10.1103/PhysRevLett.128.170501.
[77] Lu C Y, Cao Y, Peng C Z, et al.Micius quantum experiments in space[J].Reviews of Modern Physics, 2022, 94:035001.
[78] Gu Y D.The China Space Station:A new opportunity for space science[J].National Science Review, 2022, 9(1):nwab219.
[79] Let's explore space station science[EB/OL].[2022-12-22].https://www.nasa.gov/mission_pages/station/research/experiments/explorer/index.html#.
[80] Baque M, Backhaus T, Meesse J, et al.Biosignature stability in space enables their use for life detection on Mars[J].Science Advances, 2022, 8(36), doi:10.1126/sciadv.abn7412.
[81] Cooley S S, Fisher J B, Goldsmith G R.Convergence in water use efficiency within plant functional types across contrasting climates[J].Nature Plants, 2022, 8:341-345.
[82] Miguel A S D, Bennie J, Rosenfeld E, et al.Environmental risks from artificial nighttime lighting widespread and increasing across Europe[J].Science Advances, 2022, 8(37), doi:10.1126/sciadv.abl6891.
[83] Trudel G, Shahin N, Ramsay T, et al.Hemolysis contributes to anemia during long-duration space flight[J].Nature Medicine, 2022, 28:59-62.
[84] Carollo R A, Aveline D C, Rhyno B, et al.Observation of ultracold atomic bubbles in orbital microgravity[J].Nature, 606:281-286.
[85] NASA's big 2022:Historic moon mission, Webb telescope images, more[EB/OL].[2022-12-23].https://www.nasa.gov/press-release/nasa-s-big-2022-historic-moonmission-webb-telescope-images-more.
[86] National Aeronautics and Space Administration, Canadian Space Agency, European Space Agency, et al.International space station benefits for humanity 2022[R].Huntsville:International Space Station Program Science Forum, 2022.
[87] Aguilar-Benitez M, Cavasonza L A, Ambrosi G, et al.Properties of daily helium fluxes[J].Physical Review Letters, 2022, 128(23):231102.
[88] 王赤.加速空间科学发展建设航天强国——中科院科研院所负责人谈"四个面向"[N].科技日报, 2022-12-29(5).
[89] Wang C, Song T T, Shi P, et al.China's space science pProgram (2025-2030):Strategic priority program on space science (III)[J].Chinese Journal of Space Science, 2022, 42(4):514-518.
[90] 范全林, 宋婷婷, 时蓬, 等.空间科学强国指标体系研究及其启示[J].中国科学院院刊, 2022, 37(8):1076-1087.
[91] 王赤.加速空间科学发展建设世界科技强国[J].红旗文稿, 2022, 19:16-19.
[92] National Aeronautics and Space Administration.Science 2020-2024:A vision for scientific excellence in 2021[R].Washington, DC:National Aeronautics and Space Administration, 2022.
[93] National Aeronautics and Space Administration.Moon to Mars objectives[R].Washington, DC:National Aeronautics and Space Administration, 2022.
[94] Earth orbit, Moon, Mars:ESA's ambitious roadmap[EB/OL].[2022-12-20].https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Earth_orbit_Moon _Mars_ESA_s_ambitious_roadmap.
[95] 王赤, 白青江, 时蓬, 等.美国行星科学2023-2032年规划及启示[J].科技导报, 2022, 40(15):6-15.
[96] NASA to start astrophysics probe program[EB/OL].[2022-12-05].https://spacenews.com/nasa-to-start-astrophysics-probe-program/.
[97] 王赤, 宋婷婷, 时蓬, 等.10年见证中国空间科学发展进入新时代[J].科技导报, 2022, 40(19):6-14.
[98] 袁为民, 张臣, 陈勇, 等.爱因斯坦探针:探索变幻多姿的 X射线宇宙[J].中国科学:物理学力学天文学, 2018, 48(3):039502.
文章导航

/