[1] Zhang X Y, Zhang C Z, Qiao M M, et al.Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells[J].Cancer Cell, 2022, 40(11):1407-d:PDF.pdf1422.
[2] Dubrot J, Du P P, Lane-Reticker S K, et al.In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer[J].Nature Immunology, 2022, 23(10):1495-1506.
[3] Liu Y Y, Liang X Y, Yin X N, et al.Blockade of IDOkynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells[J].Nature Communications, 2017, 8:15207.
[4] Guo A, Huang H L, Zhu Z X, et al.cBAF complex components and MYC cooperate early in CD8+ T cell fate[J].Nature, 2022, 607(7917):135-141.
[5] Belk J A, Yao W, Ly N, et al.Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence[J].Cancer Cell, 2022, 40(7):768-786.
[6] Huang Q Z, Wu X, Wang Z M, et al.The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes[J].Cell, 2022, 185(22):4049-4066.
[7] Grebinoski S, Zhang Q, Cillo A R, et al.Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3[J].Nature Immunology, 2022, 23(6):868-877.
[8] Siddiqui I, Schaeuble K, Chennupati V, et al.Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy[J].Immunity, 2019, 50(1):195-211.
[9] Jansen C S, Prokhnevska N, Master V A, et al.An intratumoral niche maintains and differentiates stem-like CD8+ T cells[J].Nature, 2019, 576(7787):465-470.
[10] Miller B C, Sen D R, Al A R, et al.Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade[J].Nature Immunology, 2019, 20(3):326-336.
[11] Mo F, Yu Z Y, Li P, et al.An engineered IL-2 partial agonist promotes CD8+ T cell stemness[J].Nature, 2021, 597(7877):544-548.
[12] Codarri D L, Nicolini V, Hashimoto M, et al.PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells[J].Nature, 2022, 610(7930):161-172.
[13] Hashimoto M, Araki K, Cardenas M A, et al.PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program[J].Nature, 2022, 610(7930):173-181.
[14] Liu Y Y, Zhou N N, Zhou L, et al.IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor[J].Nature Immunology, 2021, 22(3):358-369.
[15] Gearty S V, Dundar F, Zumbo P, et al.An autoimmune stem-like CD8+ T cell population drives type 1 diabetes[J].Nature, 2022, 602(7895):156-161.
[16] Pagan A J, Lee L J, Edwards-Hicks J, et al.mTOR-regulated mitochondrial metabolism limits mycobacteriuminduced cytotoxicity[J].Cell, 2022, 185(20):3720-3738.
[17] Yu J S, Xiao K, Chen X H, et al.Neuron-derived neuropeptide Y fine-tunes the splenic immune responses[J].Neuron, 2022, 110(8):1327-1339.
[18] Guan X N, Polesso F, Wang C J, et al.Androgen receptor activity in T cells limits checkpoint blockade efficacy[J].Nature, 2022, 606(7915):791-796.
[19] Vellano C, White M, Andrews M, et al.Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy[J].Nature, 2022, 606(7915):797-803.
[20] Yang C, Jin J S, Yang Y Q, et al.Androgen receptormediated CD8+ T cell stemness programs drive sex differences in antitumor immunity[J].Immunity, 2022, 55(7):1268-1283.
[21] Shi K B, Li H D, Chang T, et al.Bone marrow hematopoiesis drives multiple sclerosis progression[J].Cell, 2022, 185(13):2234-2247.
[22] Xu Y L, Yan J X, Tao Y, et al.Pituitary hormone alphaMSH promotes tumor-induced myelopoiesis and immunosuppression[J].Science, 2022, 377(6610):1085-1091.
[23] Kumagai S, Koyama S, Itahashi K, et al.Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J].Cancer Cell, 2022, 40(2):201-218.
[24] Notarangelo G, Spinelli J B, Perez E M, et al.Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function[J].Science, 2022, 377(6614):1519-1529.
[25] Hochrein S M, Wu H, Eckstein M, et al.The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming[J].Cell Metab, 2022, 34(4):516-532.
[26] Hong H S, Mbah N E, Shan M, et al.OXPHOS promotes apoptotic resistance and cellular persistence in T (H)17 cells in the periphery and tumor microenvironment[J].Science Immunology, 2022, 7(77):m8182.
[27] Wei Z, Oh J, Flavell R A, et al.LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages[J].Nature, 2022, 609(7926):348-353.
[28] Tang K, Zhang H F, Deng J H, et al.Ammonia detoxification promotes CD8+ T cell memory development by urea and citrulline cycles[J/OL].[2022-12-10].https://www.nature.com/articles/s41590-022-01365-1.
[29] Sterner R C, Sterner R M.CAR-T cell therapy:Current limitations and potential strategies[J].Blood Cancer Journal, 2021, 11(4):69.
[30] Irvine D J, Maus M V, Mooney D J, et al.The future of engineered immune cell therapies[J].Science, 2022, 378(6622):853-858.
[31] Zhang J Q, Hu Y X, Yang J X, et al.Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL[J].Nature, 2022, 609(7926):369-374.
[32] Foy S P, Jacoby K, Bota D A, et al.Non-viral precision T cell receptor replacement for personalized cell therapy[J/OL].[2022-12-10].https://www.nature.com/articles/s41586-022-05531-1.
[33] Daniels K G, Wang S Y, Simic M S, et al.Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning[J].Science, 2022, 378(6625):1194-1200.
[34] Li H S, Wong N M, Tague E, et al.High-performance multiplex drug-gated CAR circuits[J].Cancer Cell, 2022, 40(11):1294-1305.
[35] Mougiakakos D, Kronke G, Volkl S, et al.CD19-Targeted CAR T cells in refractory systemic lupus erythematosus[J].New England Journal of Medicine, 2021, 385(6):567-569.
[36] Mackensen A, Muller F, Mougiakakos D, et al.AntiCD19 CAR T cell therapy for refractory systemic lupus erythematosus[J].Nature Medicine, 2022, 28(10):2124-d:PDF.pdf2132.