专题:2022年科技热点回眸

2022年免疫学研究热点回眸

  • 黄波
展开
  • 中国医学科学院基础医学研究所, 北京 100730
黄波,教授,研究方向为肿瘤免疫,电子信箱:tjhuangbo@hotmail.com

收稿日期: 2022-12-20

  修回日期: 2023-01-04

  网络出版日期: 2023-02-10

Hotspots of immunology in 2022: A review

  • HUANG Bo
Expand
  • Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2022-12-20

  Revised date: 2023-01-04

  Online published: 2023-02-10

摘要

全球科学家在新冠病毒疫情的巨大挑战中从未停止免疫学研究的步伐,2022年免疫学仍然取得了长足进展。概述了2022年免疫学研究的热点及进展,包括T细胞记忆、干性及耗竭分化的深入探究、新的免疫检查点和免疫细胞亚群的发现、通过神经内分泌及代谢途径调控免疫以及免疫治疗新策略的探索。

本文引用格式

黄波 . 2022年免疫学研究热点回眸[J]. 科技导报, 2023 , 41(1) : 124 -130 . DOI: 10.3981/j.issn.1000-7857.2023.01.007

Abstract

Global scientists have not stopped the pace of immunological research to meet the great challenge of the COVID-19 pandemic. In the past 2022, immunology made significant progress. This review highlights a few breakthroughs, including the indepth exploration of T cell memory, stemness and exhaustion, the discovery of new immune checkpoints and immune cell subsets, exploration of immune regulation through neuroendocrine and metabolic pathways, and exploration of new strategies for immunotherapy.

参考文献

[1] Zhang X Y, Zhang C Z, Qiao M M, et al.Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells[J].Cancer Cell, 2022, 40(11):1407-d:PDF.pdf1422.
[2] Dubrot J, Du P P, Lane-Reticker S K, et al.In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer[J].Nature Immunology, 2022, 23(10):1495-1506.
[3] Liu Y Y, Liang X Y, Yin X N, et al.Blockade of IDOkynurenine-AhR metabolic circuitry abrogates IFN-gamma-induced immunologic dormancy of tumor-repopulating cells[J].Nature Communications, 2017, 8:15207.
[4] Guo A, Huang H L, Zhu Z X, et al.cBAF complex components and MYC cooperate early in CD8+ T cell fate[J].Nature, 2022, 607(7917):135-141.
[5] Belk J A, Yao W, Ly N, et al.Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence[J].Cancer Cell, 2022, 40(7):768-786.
[6] Huang Q Z, Wu X, Wang Z M, et al.The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes[J].Cell, 2022, 185(22):4049-4066.
[7] Grebinoski S, Zhang Q, Cillo A R, et al.Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3[J].Nature Immunology, 2022, 23(6):868-877.
[8] Siddiqui I, Schaeuble K, Chennupati V, et al.Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy[J].Immunity, 2019, 50(1):195-211.
[9] Jansen C S, Prokhnevska N, Master V A, et al.An intratumoral niche maintains and differentiates stem-like CD8+ T cells[J].Nature, 2019, 576(7787):465-470.
[10] Miller B C, Sen D R, Al A R, et al.Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade[J].Nature Immunology, 2019, 20(3):326-336.
[11] Mo F, Yu Z Y, Li P, et al.An engineered IL-2 partial agonist promotes CD8+ T cell stemness[J].Nature, 2021, 597(7877):544-548.
[12] Codarri D L, Nicolini V, Hashimoto M, et al.PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells[J].Nature, 2022, 610(7930):161-172.
[13] Hashimoto M, Araki K, Cardenas M A, et al.PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program[J].Nature, 2022, 610(7930):173-181.
[14] Liu Y Y, Zhou N N, Zhou L, et al.IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor[J].Nature Immunology, 2021, 22(3):358-369.
[15] Gearty S V, Dundar F, Zumbo P, et al.An autoimmune stem-like CD8+ T cell population drives type 1 diabetes[J].Nature, 2022, 602(7895):156-161.
[16] Pagan A J, Lee L J, Edwards-Hicks J, et al.mTOR-regulated mitochondrial metabolism limits mycobacteriuminduced cytotoxicity[J].Cell, 2022, 185(20):3720-3738.
[17] Yu J S, Xiao K, Chen X H, et al.Neuron-derived neuropeptide Y fine-tunes the splenic immune responses[J].Neuron, 2022, 110(8):1327-1339.
[18] Guan X N, Polesso F, Wang C J, et al.Androgen receptor activity in T cells limits checkpoint blockade efficacy[J].Nature, 2022, 606(7915):791-796.
[19] Vellano C, White M, Andrews M, et al.Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy[J].Nature, 2022, 606(7915):797-803.
[20] Yang C, Jin J S, Yang Y Q, et al.Androgen receptormediated CD8+ T cell stemness programs drive sex differences in antitumor immunity[J].Immunity, 2022, 55(7):1268-1283.
[21] Shi K B, Li H D, Chang T, et al.Bone marrow hematopoiesis drives multiple sclerosis progression[J].Cell, 2022, 185(13):2234-2247.
[22] Xu Y L, Yan J X, Tao Y, et al.Pituitary hormone alphaMSH promotes tumor-induced myelopoiesis and immunosuppression[J].Science, 2022, 377(6610):1085-1091.
[23] Kumagai S, Koyama S, Itahashi K, et al.Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J].Cancer Cell, 2022, 40(2):201-218.
[24] Notarangelo G, Spinelli J B, Perez E M, et al.Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function[J].Science, 2022, 377(6614):1519-1529.
[25] Hochrein S M, Wu H, Eckstein M, et al.The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming[J].Cell Metab, 2022, 34(4):516-532.
[26] Hong H S, Mbah N E, Shan M, et al.OXPHOS promotes apoptotic resistance and cellular persistence in T (H)17 cells in the periphery and tumor microenvironment[J].Science Immunology, 2022, 7(77):m8182.
[27] Wei Z, Oh J, Flavell R A, et al.LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages[J].Nature, 2022, 609(7926):348-353.
[28] Tang K, Zhang H F, Deng J H, et al.Ammonia detoxification promotes CD8+ T cell memory development by urea and citrulline cycles[J/OL].[2022-12-10].https://www.nature.com/articles/s41590-022-01365-1.
[29] Sterner R C, Sterner R M.CAR-T cell therapy:Current limitations and potential strategies[J].Blood Cancer Journal, 2021, 11(4):69.
[30] Irvine D J, Maus M V, Mooney D J, et al.The future of engineered immune cell therapies[J].Science, 2022, 378(6622):853-858.
[31] Zhang J Q, Hu Y X, Yang J X, et al.Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL[J].Nature, 2022, 609(7926):369-374.
[32] Foy S P, Jacoby K, Bota D A, et al.Non-viral precision T cell receptor replacement for personalized cell therapy[J/OL].[2022-12-10].https://www.nature.com/articles/s41586-022-05531-1.
[33] Daniels K G, Wang S Y, Simic M S, et al.Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning[J].Science, 2022, 378(6625):1194-1200.
[34] Li H S, Wong N M, Tague E, et al.High-performance multiplex drug-gated CAR circuits[J].Cancer Cell, 2022, 40(11):1294-1305.
[35] Mougiakakos D, Kronke G, Volkl S, et al.CD19-Targeted CAR T cells in refractory systemic lupus erythematosus[J].New England Journal of Medicine, 2021, 385(6):567-569.
[36] Mackensen A, Muller F, Mougiakakos D, et al.AntiCD19 CAR T cell therapy for refractory systemic lupus erythematosus[J].Nature Medicine, 2022, 28(10):2124-d:PDF.pdf2132.
文章导航

/