专题:2022年科技热点回眸

2022年纳米颗粒精确自组装热点回眸

  • 张泽英 ,
  • 王华东 ,
  • 杨旭 ,
  • 程敬群 ,
  • 谭芷钰 ,
  • 潘项羽 ,
  • 苏萌 ,
  • 宋延林
展开
  • 1. 中国科学院化学研究所绿色印刷院重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049
张泽英,博士,研究方向为纳米颗粒自组装,电子信箱:zhangzy@iccas.ac.cn

收稿日期: 2022-12-24

  修回日期: 2023-01-06

  网络出版日期: 2023-02-10

Review of precise self-assembly of nanoparticles in 2022

  • ZHANG Zeying ,
  • WANG Huadong ,
  • YANG Xu ,
  • CHENG Jingqun ,
  • TAN Zhiyu ,
  • PAN Xiangyu ,
  • SU Meng ,
  • SONG Yanlin
Expand
  • 1. Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-12-24

  Revised date: 2023-01-06

  Online published: 2023-02-10

摘要

构筑具有特定功能的复杂物质是纳米颗粒自组装的重要目标之一。聚焦于纳米颗粒自组装的基本原则,讨论了纳米粒子间的相互作用力驱动自组装具有理想性能的纳米结构和材料,精确制备从零维到三维的高质量结构,如胶体分子、纳米链、胶体晶体和光子晶体等;回顾了2022年纳米颗粒组装体在传感、光电器件、显示、药物递送和生物医疗诊断领域所取得的重要进展,并提出了该领域在构筑新物质方面面临的挑战。

本文引用格式

张泽英 , 王华东 , 杨旭 , 程敬群 , 谭芷钰 , 潘项羽 , 苏萌 , 宋延林 . 2022年纳米颗粒精确自组装热点回眸[J]. 科技导报, 2023 , 41(1) : 146 -158 . DOI: 10.3981/j.issn.1000-7857.2023.01.010

Abstract

Constructing complex matters with unique functions is one of the goals of nanoparticle self-assembly. In this article we review the basic principle of nanoparticles self-assembly and discuss the interactions between nanoparticles to regulate selfassembled structures and materials with desirable properties. Based on these principles, high quality structures from zero to three dimensions can be prepared such as colloidal molecules, nanochains, colloidal crystals and photonic crystals. We summarize the important advances of assembled structures in sensing, optoelectronic devices, display, drug delivery and biomedical diagnostics in 2020. Finally, we propose the challenges of building new substances in this field.

参考文献

[1] Li Z, Fan Q, Yin Y.Colloidal self-assembly approaches to smart nanostructured materials[J].Chemical Reviews, 2022, 122(5):4976-5067.
[2] Cui Y, Zhu H, Cai J, et al.Self-regulated co-assembly of soft and hard nanoparticles[J].Nature Communication, 2021, 12(1):5682.
[3] Rao A, Roy S, Jain V, et al.Nanoparticle self-assembly:From design principles to complex matter to functional materials[J].ACS Applied Materials & Interfaces, 2022, doi:10.1021/acsami.2c05378.
[4] Dijkstra M, Luijten E.From predictive modelling to machine learning and reverse engineering of colloidal selfassembly[J].Nature Materials, 2021, 20(6):762-773.
[5] Lv J, Gao X, Han B, et al.Self-assembled inorganic chiral superstructures[J].Nature Reviews Chemistry, 2022, 6(2):125-145.
[6] Lee S, Sim K, Moon S Y, et al.Controlled assembly of plasmonic nanoparticles:From static to dynamic nanostructures[J].Advanced Materials, 2021, 33(46):e2007668.
[7] Grzelczak M, Vermant J, Furst E M, et al.Directed selfassembly of nanoparticles[J].ACS Nano, 2010, 4(7):3591-3605.
[8] Zhang N N, Shen X, Liu K, et al.Polymer-tethered nanoparticles:From surface engineering to directional self-assembly[J].Accounts of Chemical Research, 2022, 55(11):1503-1513.
[9] Bian T, Gardin A, Gemen J, et al.Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures[J].Nature Chemistry, 2021, 13(10):940-949.
[10] Nakagawa F, Saruyama M, Takahata R, et al.In situ control of crystallinity of 3D colloidal crystals by tuning the growth kinetics of nanoparticle building blocks[J].Journal of the American Chemical Society, 2022, 144(13):5871-5877.
[11] Li Z, Qian C, Xu W, et al.Coupling morphological and magnetic anisotropy for assembling tetragonal colloidal crystals[J].Science Advances, 2021, 7(37):eabh1289.
[12] Wang Y, Li H, Chu J, et al.Site-selective assembly of centimeter-scale arrays of precisely oriented magnetic nanoellipsoids[J].ACS Nano, 2022, doi:10.1021/acsnano.2c09187.
[13] Huang C H, Louis B, Bresoli-Obach R, et al.The primeval optical evolving matter by optical binding inside and outside the photon beam[J].Nature Communication, 2022, 13(1):5325.
[14] Knappe G A, Wamhoff E-C, Bathe M.Functionalizing DNA origami to investigate and interact with biological systems[J].Nature Reviews Materials, 2022, doi:10.1038/s41578-022-00517-x.
[15] Cheng H F, Distler M E, Lee B, et al.Nanoparticle superlattices through template-encoded DNA dendrimers[J].Journal of the American Chemical Society, 2021, 143(41):17170-17179.
[16] Li K, Li H, Guo D, et al.3D optical heterostructure patterning by spatially allocating nanoblocks on a printed matrix[J].ACS Nano, 2022, 16(9):14838-14848.
[17] Wang C, Lin X, Schäfer C G, et al.Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors[J].Advanced Functional Materials, 2020, 31(9):2008601.
[18] Li X, Chen L, Ma Y, et al.Ultrafast fabrication of largearea colloidal crystal micropatterns via self-assembly and transfer printing[J].Advanced Functional Materials, 2022, 32(45):2205462.
[19] Xing C, Liu D, Chen J, et al.Convective self-assembly of 2D nonclose-packed binary Au nanoparticle arrays with tunable optical properties[J].Chemistry of Materials, 2021, 33(1):310-319.
[20] Ye S S, Zha H N, Xia Y F, et al.Centimeter-scale superlattices of three-dimensionally orientated plasmonic dimers with highly tunable collective properties[J].ACS Nano, 2022, 16(3):4609.
[21] Guo D, Ruan J, Xu Y, et al.Embossed template induced particles assembly for heterostructures and the application in high-security encryption[J].Advanced Functional Materials, 2022, doi:10.1002/adfm.202210952.
[22] Chakraborty I, Pearce D J G, Verweij R W, et al.Selfassembly dynamics of reconfigurable colloidal molecules[J].ACS Nano, 2022, 16(2):2471-2480.
[23] Zhang Z, Zhao M, Su M, et al.Self-assembled 1D nanostructures for direct nanoscale detection and biosensing[J].Matter, 2022, 5(6):1865-1876.
[24] McMullen A, Munoz Basagoiti M, Zeravcic Z, et al.Selfassembly of emulsion droplets through programmable folding[J].Nature, 2022, 610:502-506.
[25] Zhou S, Li J H, Lu J, et al.Chiral assemblies of pinwheel superlattices on substrates[J].Nature, 2022, 612(7939):259.
[26] Fu Q, Yu W, Bao G, et al.Electrically responsive photonic crystals with bistable states for low-power electrophoretic color displays[J].Nature Communication, 2022, 13(1):7007.
[27] Zhang Y, Zhang L, Zhang C, et al.Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing[J].Nature Communication, 2022, 13(1):7095.
[28] Dai S, Li W, Xu R, et al.Label-free fluorescence quantitative detection platform on plasmonic silica photonic crystal microsphere array[J].Analytical Chemistry, 2022, doi:10.1021/acs.analchem.2c04000.
[29] Meng D, Hao C, Cai J, et al.Tailored chiral copper selenide nanochannels for ultrasensitive enantioselective recognition and detection[J].Angewandte Chemie International Edition, 2021, 60(47):24997-25004.
[30] Guo Y, Zhu J, Kou D, et al.Plasmonic local electric field-enhanced interface toward high-efficiency Cu(2) ZnSn(S,Se)(4) thin-film solar cells[J].ACS Applied Materials & Interfaces, 2022, doi:10.1021/acsami.2c04027.
[31] Daem N, Mayer A, Spronck G, et al.Inverse opal photonic nanostructures for enhanced light harvesting in CH 3NH3PbI3 perovskite solar cells[J].ACS Applied Nano Materials, 2022, 5(9):13583-13593.
[32] Cao Z, Li D, Zhao L, et al.Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery[J].Nature Communication, 2022, 13(1):2038.
[33] Wong C K, Chen F, Walther A, et al.Bioactive patchy nanoparticles with compartmentalized cargoes for simultaneous and trackable delivery[J].Angewandte Chemie International Edition, 2019, 58(22):7335-7340.
[34] Liu Y, Yang Z, Huang X, et al.Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy[J].ACS Nano, 2018, 12(8):8129-8137.
[35] Wang J, Li J, Li M, et al.Nanolab in a cell:Crystallization-induced in situ self-assembly for cancer theranostic amplification[J].Journal of the American Chemical Society, 2022, 144(31):14388-14395.
文章导航

/