专题:2022年科技热点回眸

2022年太赫兹人工表面等离激元科技热点回眸

  • 司黎明 ,
  • 董芳会 ,
  • 董琳 ,
  • 张庆乐 ,
  • 吕昕
展开
  • 1. 北京理工大学集成电路与电子学院, 北京 100081;
    2. 毫米波与太赫兹技术北京市重点实验室, 北京 100081;
    3. 北京理工大学长三角研究院, 嘉兴 314019
司黎明,副教授,研究方向为电磁场与微波技术,电子信箱:lms@bit.edu.cn

收稿日期: 2022-12-31

  修回日期: 2023-01-03

  网络出版日期: 2023-02-10

基金资助

国家重点研发计划项目(2022YFF0604801);国家自然科学基金项目(62271056,62171186,62201037,61527805);北京市自然科学基金-海淀原始创新联合基金项目(L222042);东南大学毫米波国家重点实验室2023年开放课题(K202326);航天九院国防科技重点实验室开放基金项目(6142221200201);北京理工大学基础研究基金中白国际合作项目(BITBLR2020014);高等学校学科科研创新引智计划项目(B14010)

Review of terahertz spoof surface plasmon technology hotspots in 2022

  • SI Liming ,
  • DONG Fanghui ,
  • DONG Lin ,
  • ZHANG Qingle ,
  • Lü Xin
Expand
  • 1. School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, Beijing 100081, China;
    3. Yangtze River Delta Research Institute of Beijing University of Technology, Jiaxing 314019, China

Received date: 2022-12-31

  Revised date: 2023-01-03

  Online published: 2023-02-10

摘要

随着第六代通信技术(6G)、空间态势感知等系统对高通量、高带宽要求的进一步提高,太赫兹技术成为国际学术界和工业界的研究热点。2022年,太赫兹人工表面等离激元研究在国际上受到很大的关注,盘点了该领域的关键热点与新进展,包括基于太赫兹人工表面等离激元的无源器件、有源器件、传感器、通信系统以及生物医药应用等。人工表面等离激元对传输的电磁波具有亚波长的电场束缚能力和非线性色散特性,为太赫兹功能器件和系统应用的实现带来了新机遇。

本文引用格式

司黎明 , 董芳会 , 董琳 , 张庆乐 , 吕昕 . 2022年太赫兹人工表面等离激元科技热点回眸[J]. 科技导报, 2023 , 41(1) : 173 -183 . DOI: 10.3981/j.issn.1000-7857.2023.01.012

Abstract

Due to the higher requirements of high throughput and large bandwidth for 6G wireless communication and space situational awareness (SSA) systems, terahertz technology has gradually become a research hotspot in worldwide academic and industrial fields. Spoof surface plasmon polaritons have strong field confinement in sub-wavelength region and nonlinear dispersion characteristics for the transmitted electromagnetic waves, bringing new opportunities for the realization of terahertz functional devices and system applications. In 2022, terahertz spoof surface plasmon polaritons received considerable attention in the development of passive devices, active devices, sensors, 6G communication and biomedical systems. This paper reviews the hotspots of terahertz spoof surface plasmon technology in 2022.

参考文献

[1] 梁美彦, 任竹云, 张存林.太赫兹空间探测技术研究进展[J].激光与光电子学进展, 2019, 56(18):180004.
[2] 冯伟, 韦舒婷, 曹俊诚.6G技术发展愿景与太赫兹通信[J].物理学报, 2021, 70(24):244303.
[3] van der Valk N C J, Planken P C M.Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J].Applied Physics Letters, 2002, 81(9):1558-1560.
[4] Planken P C M, van der Valk N C J.Spot-size reduction in terahertz apertureless near-field imaging[J].Optics letters, 2004, 29(19):2306-2308.
[5] Chen H T, Kersting R, Cho G C.Terahertz imaging with nanometer resolution[J].Applied Physics Letters, 2003, 83(15):3009-3011.
[6] Zhu W, Agrawal A, Nahata A.Planar plasmonic terahertz guided-wave devices[J].Optics Express, 2008, 16(9):6216-6226.
[7] Tonouchi M.Cutting-edge terahertz technology[J].Nature photonics, 2007, 1(2):97-105.
[8] Vaswani C, Mootz M, Sundahl C, et al.Terahertz secondharmonic generation from lightwave acceleration of symmetry-breaking nonlinear supercurrents[J].Physical Review Letters, 2020, 124(20):207003.
[9] Nakamura S, Katsumi K, Terai H, et al.Nonreciprocal terahertz second-harmonic generation in superconducting nbn under supercurrent injection[J].Physical Review Letters, 2020, 125(9):097004.
[10] Maier S A, Atwater H A.Plasmonics:Localization and guiding of electromagnetic energy in metal/dielectric structures[J].Journal of applied physics, 2005, 98(1):10.
[11] Hibbins A P, Evans B R, Sambles J R.Experimental verification of designer surface plasmons[J].Science, 2005, 308(5722):670-672.
[12] Zhang H C, Liu S, Shen X, et al.Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J].Laser & Photonics Reviews, 2015, 9(1):83-90.
[13] Yin J Y, Ren J, Zhang H C, et al.Broadband frequencyselective spoof surface plasmon polaritons on ultrathin metallic structure[J].Scientific Reports, 2015, 5(1):1-5.
[14] Yin J Y, Ren J, Zhang H C, et al.Capacitive-coupled series spoof surface plasmon polaritons[J].Scientific Reports, 2016, 6(1):1-8.
[15] Gao X, Zhou L, Cui T J.Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial[J].Scientific Reports, 2015, 5(1):1-5.
[16] Garcia-Vidal F J, Fernández-Domínguez A I, MartinMoreno L, et al.Spoof surface plasmon photonics[J].Reviews of Modern Physics, 2022, 94(2):025004.
[17] Martín-Cano D, Nesterov M L, Fernandez-Dominguez A I, et al.Domino plasmons for subwavelength terahertz circuitry[J].Optics Express, 2010, 18(2):754-764.
[18] Pendry J B, Martin-Moreno L, Garcia-Vidal F J.Mimicking surface plasmons with structured surfaces[J].Science, 2004, 305(5685):847-848
[19] Shen X, Cui T J, Martin-Cano D, et al.Conformal surface plasmons propagating on ultrathin and flexible films[J].Proceedings of the National Academy of Sciences, 2013, 110(1):40-45.
[20] Jiang T, Shen L, Wu J J, et al.Realization of tightly confined channel plasmon polaritons at low frequencies[J].Applied Physics Letters, 2011, 99(26):261103.
[21] Zhang Y, Lu Y, Yuan M, et al.Rotated pillars for functional integrated on-chip terahertz spoof surface plasmon polariton devices[J].Advanced Optical Materials, 2022:2102561.
[22] Li H, Li Y, Yuan M, et al.Terahertz spoof surface plasmonic demultiplexer based on band-stop waveguide units[J].Applied Optics, 2022, 61(22):21-27.
[23] Le Zhang Q, Chen B J, Shum K M, et al.Miniaturized spoof surface plasmon polaritons load for planar terahertz circuit application on thick substrate[J].IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3):1049-1053.
[24] Zhu H, Zhang Y, Ye L, et al.Compact terahertz on-chip filter with broadband rejection based on spoof surface plasmon polaritons[J].IEEE Electron Device Letters, 2022, 43(6):970-973.
[25] Yan S, Wang J, Kong X, et al.A terahertz band-pass filter based on coplanar-waveguide and spoof surface plasmon polaritons[J].IEEE Photonics Technology Letters, 2022, 34(7):375-378.
[26] Wang C, Zhang Z, Zhang Y, et al.Enhancing directivity of terahertz photoconductive antennas using spoof surface plasmon structure[J].New Journal of Physics, 2022, 24(7):073046.
[27] Feng M, Zhang B, Ling H, et al.Active metal-graphene hybrid terahertz surface plasmon polaritons[J].Nanophotonics, 2022, 11(14):3331-3338.
[28] Hlali A, Houaneb Z, Zairi H.A terahertz tunable attenuator based on hybrid metal-graphene structure on spoof surface plasmon polaritons waveguide[J].Physica B:Condensed Matter, 2022, 644:414208.
[29] Wang S, Chen K, Zhao J, et al.Tunable non-diffraction spoof surface plasmon polaritons with liquid crystal terahertz metasurface[C]//2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).Piscataway:IEEE, 2021:136-138.
[30] Yan D, Li X, Ma C, et al.Terahertz refractive index sensing based on gradient metasurface coupled confined spoof surface plasmon polaritons mode[J].IEEE Sensors Journal, 2022, 22(1):324-329.
[31] Kumari A, Singh S P, Tiwari N K, et al.Design of a differential spoof surface plasmon sensor for dielectric sensing and defect detection[J].IEEE Sensors Journal, 2022, 22(4):3188-3195.
[32] Fu J H, Wu W J, Wang D W, et al.High-sensitivity microfluidic sensor based on quarter-mode interdigitated spoof plasmons[J].IEEE Sensors Journal, 2022, 22(24):23888-23895.
[33] Chang M F, Cong J, Kaplan A, et al.CMP network-onchip overlaid with multi-band RF-interconnect[C]//2008 IEEE 14th International Symposium on High Performance Computer Architecture.Piscataway:IEEE, 2008:191-202.
[34] Liang Y, Yu H, Zhao J, et al.An energy efficient and low cross-talk CMOS sub-THz I/O with surface-wave modulator and interconnect[C]//2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).Piscataway:IEEE, 2015:110-115.
[35] Liang Y, Yu H, Feng G, et al.An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS[J].IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8):2762-d:PDF.pdf2774.
[36] Liang Y, Yu H, Wang H, et al.Towards integrated metadevices for terahertz silicon plasmonics:A review of recent progress[J].Chip, 2022:100030.
[37] Liang Y, Boon C C, Zhang H C, et al.A 13.5 Gb/s 140 GHz silicon redriver exploiting metadevices for shortrange OOK communications[J].IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1):239-d:PDF.pdf253.
[38] Blessan T M, Venkateswaran C, Yogesh N.All-optical terahertz logic gates based on coupled surface plasmon polariton sub-wavelength waveguiding in bulk Dirac semimetal[J].Optik, 2022, 257:168795.
[39] Imtiaz N, Nayem S H, Joy S R, et al.On-chip channel conductance based modulation of spoof surface plasmon polariton interconnects[C]//CLEO:Science and Innovations, Optica Publishing Group, 2022:34.
[40] Bhati R, Jewariya M, Malik A K.Spoof surface plasmonbased terahertz metasensor for glucose and ethanol[J].Applied Physics A, 2022, 128(9):1-8.
[41] Sarkar A, Banna G M H U, Unluturk B, et al.Dualmode annular spoof surface plasmon polariton based thz compact bio-sensors with increased sensitivity and bandwidth[C]//2022 IEEE Sensors.Piscataway:IEEE, 2022:1-4.
[42] Yao H, Zhang W, Liu W, et al.Resolved terahertz spectroscopy of tiny molecules employing tunable spoof plasmons in an otto prism configuration[J].Journal of Optics, 2022, 24(4):045301.
[43] Li X J, Yang J, Yan D X, et al.Highly enhanced trace amount terahertz fingerprint spectroscopy by multiplexing surface spoof plasmon metasurfaces in a single layer[J].Optics Communications, 2022, 525:128777.
文章导航

/