专题:经济作物珍稀濒危种质资源保护

葡萄叶片黄化研究进展

  • 王绍祖 ,
  • 张颖 ,
  • 樊秀彩 ,
  • 孙磊 ,
  • 姜建福 ,
  • 刘崇怀
展开
  • 中国农业科学院郑州果树研究所,郑州 450009
王绍祖,硕士研究生,研究方向为葡萄种质资源,电子信箱:1063050172@qq.com

收稿日期: 2022-08-22

  修回日期: 2022-09-27

  网络出版日期: 2023-03-13

基金资助

国家重点研发计划项目(2021YFD1200202);中国农业科学院科技创新工程专项(CAAS-ASTIP-2021-ZFRI);现代农业产业技术体系建设专项(CARS-29-yc-1)

Advance in the research of grape leaf chlorosis

  • WANG Shaozu ,
  • ZHANG Ying ,
  • FAN Xiucai ,
  • SUN Lei ,
  • JIANG Jianfu ,
  • LIU chonghuai
Expand
  • Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China

Received date: 2022-08-22

  Revised date: 2022-09-27

  Online published: 2023-03-13

摘要

葡萄叶片黄化严重影响葡萄果实的产量品质等经济性状,制约了葡萄产业的发展。为了厘清黄化现象的影响因素,将黄化现象发生原因主要分为病理性黄化和生理性黄化两大类。病理性黄化主要指植原体和病毒病引起的黄化,生理性黄化原因主要归纳为盐胁迫和碱胁迫。盐胁迫导致的叶片黄化主要由于单盐毒害作用降低叶绿素的合成引起,碱胁迫引起的黄化主要由于土壤碱性条件诱导NH4-和HCO3-积累造成植株中铁元素受阻引起。总结了叶片黄化对植株产生的影响、防治和矫正技术、葡萄抗缺铁生理机制以及抗缺铁品种的筛选成果,指出当前关于葡萄叶片黄化相关研究的不足。

本文引用格式

王绍祖 , 张颖 , 樊秀彩 , 孙磊 , 姜建福 , 刘崇怀 . 葡萄叶片黄化研究进展[J]. 科技导报, 2023 , 41(4) : 65 -72 . DOI: 10.3981/j.issn.1000-7857.2023.04.008

Abstract

With the continuous expansion of grape planting area, the leaf chlorosis of grape often occurs in China and other grape producing areas in the world, which seriously affects the yield and quality of grape fruits and seriously restricts the development of grape industry. The occurrence of this phenomenon is often affected by many factors. In this paper, the causes of chlorosis are mainly divided into two categories: pathological chlorosis and physiological chlorosis. The pathological chlorosis is mainly induced by phytoplasma and virus disease. The physiological chlorosis is mainly induced by salt stress and alkali stress. The chlorosis of leaves caused by salt stress was mainly due to the reduction of chlorophyll synthesis by the toxic effect of single salts, while the chlorosis caused by alkaline stress was mainly due to the blockage of iron transport in the plant caused by the accumulation of NO3- and HCO3- induced by alkaline soil conditions. In addition, this paper also summarizes the influence of the grape leaf chlorosis on plants, the prevention and correction techniques, the physiological mechanism of grape resistance to iron deficiency and the screening of varieties resistant to iron deficiency, and briefly summarizes the shortcomings of the current research on the grape leaf chlorosis, in order to provide a theoretical basis for the further research on the grape leaf chlorosis and the prevention and correction of chlorosis in grape production.

参考文献

[1] 杨粉莉. 葡萄黄化病的发病机理及防治方法[J]. 现代园艺, 2019(1): 159-160.
[2] 孟秀利, 林兆威, 杨德洁,等. 槟榔黄化病植株组织结构观察及生理指标分析[J]. 分子植物育种, 2022, 20(18):1-16.
[3] 牟海青, 朱水芳, 徐霞,等. 植原体病害研究概况[J]. 植物保护, 2011, 37(3): 17-22.
[4] Marzachi C, Veratti F, Bosco D. Direct PCR detection of phytoplasmas in experimentally infected insects[J]. Annals of Applied Biology, 1998, 133(1): 45-54.
[5] 葛泉卿. 葡萄植原体黄化病及其检疫技术[D]. 泰安: 山东农业大学, 2006.
[6] 王引权, 古勤生, 陈建军,等. 葡萄病毒病研究进展[J].果树学报, 2004, 21(3): 258-263.
[7] 赵静静, 乾义柯, 颉超,等. 引起葡萄黄化类症状的病毒和类病毒 RT-PCR 检测[J]. 新疆农业科学, 2015, 52(6):1099-1104.
[8] 李知行. 葡萄病毒病与类似病毒病[J]. 北方园艺, 1991(8): 6-8.
[9] 薛敦孟, 柯冲, 郑铭西. 葡萄主要病毒及其病原病毒(续)[J]. 福建果树, 1990(2): 57-60, 17.
[10] 王记侠, 张新杰, 何维华,等. 我国葡萄病毒病及其防治[J]. 中外葡萄与葡萄酒, 2007(4): 38-41.
[11] 贺普超. 葡萄学[M]. 北京: 中国农业出版社, 1999: 1-2.
[12] 王勇, 李玉玲, 郭平峰,等. NaCl盐胁迫对无核白葡萄生长的影响[J]. 中外葡萄与葡萄酒, 2014(1): 36-40.
[13] Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[14] Poljakoff-Mayber A. Morphological and anatomical changes in plants as a response to salinity stress[M]//Plants in Saline Environments. Berlin, Heidelberg: Springer, 1975: 97-117.
[15] 廖祥儒, 贺普超, 朱新产. 盐渍对葡萄光合色素含量的影响[J]. 园艺学报, 1996, 23(3): 300-302.
[16] 许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展[J]. 应用与环境生物学报, 2000, 6(4): 379-387.
[17] 李超. 盐胁迫下不同抗盐苹果砧木响应的生理差异及褪黑素的缓解效应[D]. 杨凌: 西北农林科技大学,2012.
[18] 秦玲, 齐艳玲, 秦子禹,等. 葡萄耐盐生理生化特性研究进展[J]. 河北科技师范学院学报, 2011, 25(3): 75-80.
[19] 何天明, 刘泽军, 覃伟铭,等. 土壤因子对库尔勒香梨缺铁失绿症发生的影响[J]. 西北农业学报, 2013, 22(1): 97-103.
[20] Lindsay W L, Schwab A P. The chemistry of iron in soils and its availability to plants[J]. Journal of Plant Nutrition, 1982, 5(4-7): 821-840.
[21] 李宝鑫, 杨俐苹, 卢艳丽,等. 我国葡萄主产区的土壤养分丰缺状况[J]. 中国农业科学, 2020, 53(17): 3553-3566.
[22] Mengel K. Iron availability in plant tissues-iron chlorosis on calcareous soils[J]. Plant and Soil, 1994, 165(2):275-283.
[23] Jacobson L. Iron in the leaves and chloroplasts of some plants in relation to their chlorophyll content[J]. Plant Physiology, 1945, 20(2): 233-245.
[24] Mengel K, Scherer H W, Malissiovas N. Chlorosis with respect to soil chemistry and the nutrition of vines [grapes] [J]. Mitteilungen Rebe und Wein, Obstbau und Fruechtenverwertung (Austria), 1979, 29(4): 151-156.
[25] Mengel K. Bicarbonat als auslösender Faktor der Eisenchlorose bei der Weinrebe (Vitis vinifera)[J]. Vitis 1981,20(3): 235-343.
[26] Wang T G, Peverly J H. Investigation of ferric iron reduction on the root surfaces of common reeds using an EDTA-BPDS method[J]. Journal of Plant Nutrition,1999, 22(6): 1021-1032.
[27] Susin S, Abadia A, González-Reyes J A, et al. The pH requirement for in vivo activity of the iron-deficiency induced turbo ferric chelate reductase (a comparison of the iron-deficiency-induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet)[J]. Plant Physiology, 1996, 110(1): 111-123.
[28] Brown J C, Jolley V D. Plant metabolic responses to iron-deficiency stress[J]. BioScience, 1989, 39(8): 546-551.
[29] Kosegarten H U, Hoffmann B, Mengel K. Apoplastic pH and Fe3+ reduction in intact sunflower leaves[J]. Plant Physiology, 1999, 121(4): 1069-1079.
[30] Mengel K, Planker R, Hoffmann B. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.) [J]. Journal of Plant Nutrition,1994, 17(6): 1053-1065.
[31] Mengel K, Geurtzen G. Iron chlorosis on calcareous soils. Alkaline nutritional condition as the cause for the chlorosis[J]. Journal of Plant Nutrition, 1986, 9(3-7):161-173.
[32] 邹春琴, 张福锁. 叶片质外体pH降低是铵态氮改善植物铁营养的重要机制[J].科学通报,2003, 48(16):1791-1795.
[33] Mengel K, Breininger M T, Bübl W. Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil[J].Plant and Soil, 1984, 81(3): 333-344.
[34] Toulon V, Sentenac H, Thibaud J B, et al. Role of apoplast acidification by the H+ pump[J]. Planta, 1992, 186(2): 212-218.
[35] Miller G W. Carbon dioxide-bicarbonate absorption, accumulation, effects on various plant metabolic reactions,and possible relations to lime-induced chlorosis[J]. SoilScience, 1960, 89(5): 241-245.
[36] 刘春燕, 周龙, 贾舟楫,等. 黄化对吐鲁番葡萄叶片光合及叶绿素荧光特性的影响[J]. 经济林研究, 2018, 36(2): 115-120.
[37] 黄小晶, 许泽华, 牛锐敏,等. 叶片黄化对‘赤霞珠’葡萄光合及叶绿素荧光特性的影响[J]. 经济林研究,2020, 38(3): 190-199.
[38] Shahsavandi F, Eshghi S, Gharaghani A, et al. Effects of bicarbonate induced iron chlorosis on photosynthesis apparatus in grapevine[J]. Scientia Horticulturae, 2020,270: 109427.
[39] 王翠玲, 杨晓明, 曹孜义. 缺铁黄化对葡萄生长及果实品质的影响[J]. 果树学报, 2007, 24(1): 26-29, 127.
[40] 周龙, 刘春燕, 董凯向,等. 生理性黄化对吐鲁番地区葡萄枝、叶形态学变化的影响[J]. 新疆农业科学, 2018,55(8): 1473-1482.
[41] Bavaresco L, Fregoni H, Fraschini P. Investigations on some physiological parameters involved in chlorosis occurrence in grafted grapevine[J]. Journal of Plant Nutrition, 1992, 15(10): 1791-1807.
[42] Bavaresco L, Poni S. Effect of calcareous soil on photosynthesis rate, mineral nutrition, and source-sink ratio of table grape[J]. Journal of Plant Nutrition, 2003, 26(10-11): 2123-2135
[43] 刘春燕, 罗洁, 周龙,等. 黄化病对葡萄生长发育的影响[J]. 中国农学通报, 2018, 34(11): 103-107.
[44] Bavaresco L, Civardi S, Pezzutto S, et al. Grape production, technological parameters, and stilbenic compounds as affected by lime-induced chlorosis[J]. Vitis, 2005, 44(2): 63-65.
[45] Sánchez R, García M R G, Vilanova M, et al. Aroma composition of Tempranillo grapes as affected by iron deficiency chlorosis and vine water status[J]. Scientia Agricola, 2021, doi:10.1590/1678-992X-2019-0112.
[46] 任芳, 董雅凤, 张尊平,等. 葡萄病毒研究最新进展[J].园艺学报, 2014, 41(9): 1777-1792.
[47] 曹晓艳, 谭博, 苏玉芳,等. 果树黄化病研究进展[J]. 北方果树, 2014(2): 1-3.
[48] 刘宝生, 王勇, 刘春艳,等. 果林树木黄化病的研究进展[J]. 天津农业科学, 2008, 14(6): 61-65.
[49] Huang S, Rui W Y, Peng X X, et al. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil[J]. Nutrient Cycling in Agroecosystems,2010, 86(1): 153-160.
[50] 杨青松, 李小刚, 蔺经,等. 生草对梨园土壤有效养分、水分、温度及果实品质、产量的影响[J]. 江苏农业科学, 2007, 35(5): 109-111.
[51] Papastylianou I. Timing and rate of iron chelate application to correct chlorosis of peanut[J]. Journal of Plant Nutrition, 1993, 16(7): 1193-1203.
[52] Hernandez-Apaolaza L, Gárate A, Lucena J J. Efficacy of commercial Fe(III) -EDDHA and Fe(III) -EDDHMA chelates to supply iron to sunflower and corn seedlings[J]. Journal of Plant Nutrition, 1995, 18(6): 1209-1223.
[53] Alva A K. Solubility and iron release characteristics of iron chelates and sludge products[J]. Journal of Plant Nutrition, 1992, 15(10): 1939-1954.
[54] Tagliavini M, Abadía J, Rombolà A D, et al. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees[J]. Journal of Plant Nutrition, 2000,23(11-12): 2007-2022.
[55] 邹春琴, 张福锁. 叶片质外体pH降低是铵态氮改善植物铁营养的重要机制[J].科学通报,2003, 48(16):1791-1795.
[56] Wallace A. Agronomic and horticultural aspects of iron and the law of the maximum[M]//Iron Nutrition in Soils and Plants. Dordrecht: Springer Netherlands, 1995: 207-216.
[57] Tagliavini M, Masia A, Quartieri M. Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers [J]. Plant and Soil, 1995, 176(2): 263-271.
[58] Marschner H, Römheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron[J].Journal of Plant Nutrition, 1986, 9(3-7): 695-713.
[59] 翟衡, 李佳, 邢全华,等. 抗缺铁葡萄砧木的鉴定及指标筛选[J]. 中国农业科学, 1999, 32(6): 34-39.
[60] Karimi R, Salimi F. Iron-chlorosis tolerance screening of 12 commercial grapevine (Vitis vinifera L.) cultivars based on phytochemical indices[J]. Scientia Horticulturae, 2021, 283: 110111.
[61] Bavaresco L, Fregoni M, Gambi E. In vitro method to screen grapevine genotypes for tolerance to lime-induced chlorosis[J]. Vitis, 1993, 32(3): 145-148.
[62] Ksouri R, Gharsalli M, Lachaal M. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency[J]. Journal of Plant Physiology,2005, 162(3): 335-341.
[63] Pouget R. Breeding grapevine rootstocks for resistance to iron chlorosis[C]//Proceedings of the 3rd International Symposium on Grape Breeding. Davis: Dept. of Vitic.and Enology, 1980: 191-197
文章导航

/