[1] Zhang S H, Cheng M, Song H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1):1-11.
[2] Huang Y, Li S C, Xiao G J, et al. Research progress of aero-engine blade materials and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35.
[3] 杨瑞, 齐哲, 杨金华, 等. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[4] 李军, 刘燕峰, 倪洪江, 等. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[5] Bochenek K, Basista M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications[J]. Progress in Aerospace Sciences,2015, 79: 136-146.
[6] Boyle R J, Gnanaselvam P, Parikh A H, et al. Design of stress constrained SiC/SiC ceramic matrix composite turbine blades[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2021, 143(5), doi:10.1115/1.4049776.
[7] Zhou H, Li X B, Zhang T, et al. Application progress on manufacturing technology of composite fan blades for aero-engine[J]. Aeronautical Manufacturing Technology,2022, 65(13): 84-91.
[8] 陈巍. 先进航空发动机树脂基复合材料技术现状与发展趋势[J]. 航空制造技术, 2016(5): 68-72.
[9] Ge J R, Liu Z F, Qiao J W, et al. Research progress on molding processes of fiber preforms and performances simulation of composites for aeronautical complex structures[J]. Aeronautical Manufacturing Technology, 2022, 65(16):14-30.
[10] Guan L X, Li J L, Jiao Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 748-759.
[11] 韦鑫, 荆云娟, 杨明杰, 等 . 航空发动机风扇叶片预制体研发现状及趋势[J]. 棉纺织技术, 2020, 48(8): 81-84.
[12] Gao J, Wu Z B, Kong Y, et al. Design and bird-strike resistance performance research of civil aircraft tail leading edge using different auxiliary spars[J]. Journal of Vibration and Shock, 2021, 40(8): 237-246.
[13] Mol Kavitha S, Salem S C, Sadiq A. Crashworthiness Enhancement of aluminum alloy used for leading edges of wing and empennage structures[J]. Journal of Aerospace Engineering, 2022, 35(6), doi: 10.1061/(ASCE)AS.1943-5525.0001477.
[14] Trofimov A, Le-Pavic J, Ravey C, et al. Multi-scale modeling of distortion in the non-flat 3D woven composite part manufactured using resin transfer molding[J].Composites Part A—Applied Science and Manufacturing, 2021, 140: 106145.
[15] Xiao Y, Xu J B, Wang M, et al. Multiscale model of the rtm process: From mesoscale anisotropic permeability of woven structures to macroscale resin impregnation[J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8269-8279.
[16] Zhu C, Wu N, Zhang Y F, et al. Tensile properties and failure mechanism of three-dimensional angle interlocking woven layup composites under tensile loading[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3167-3177.
[17] Kirby G H. Formation of ceramic matrix composite used for gas turbine Engine, involves introducing carbon yielding resin into open pore channels, heating melt infiltrated and melt extracted preform to produce elemental carbon and heating: 2018194690[P/OL]. [2022-12-01].
https://www.webofscience.com/wos/alldb/full-record/DIIDW:201855484V.
[18] Manicke P S, Walker B E, Ronk W R. Producing ceramic composite structure, useful as article including blade for gas turbine engine assembly, comprises providing reinforcing material and precursor slurry composition, impregnating the material with the composition, and drying: 2011150663[P/OL]. [2022-12-01].
https://www.webofscience.com/wos/alldb/full-record/DIIDW:2011H201-41.
[19] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016(21): 50-56.
[20] 杨金华, 董禹飞, 杨瑞, 等 . 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力, 2021(5): 56-59.
[21] Luo X, Xu Y L, Guo X J, et al. Research progress of ceramic matric composites turbine rotors for turbine engines[J]. Journal of Propulsion Technology, 2021, 42(1):230-240.
[22] 周何, 李小兵, 张婷, 等 . 航空发动机复合材料风扇叶片制造工艺应用进展[J]. 航空制造技术, 2022, 65(13):84-91.
[23] Dhimole V K, Chen Y, Serrao P, et al. A design feasibility study of a turbine blade disc interface (dovetail) made by four-directional braided ceramic matrix composite (SiC/SiC)[J]. International Journal of Aeronautical and Space Sciences, 2022, 23(1): 66-76.
[24] Xiang R J, Pan Z Z, Ouyang H, et al. A study of the vibration and lay-up optimization of rotating crossply laminated nanocomposite blades[J]. Composite Structures,2020, 235: 111775.
[25] 朱启晨, 陈勇, 肖贾光毅. 复合材料风扇叶片铺层设计方法研究[J]. 航空发动机, 2018, 44(3): 49-54.
[26] Li D C, Lu Z L, Tian X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022, 43(4): 525387.
[27] 唐天姿, 刘宁, 郭亚林. 中低温固化环氧复合材料研究进展[J]. 航天制造技术, 2021(3): 73-78.
[28] 许皓, 欧秋仁, 张帅, 等 . 低温固化非热压罐成型树脂及其复合材料性能[J]. 宇航材料工艺, 2021, 51(1): 50-54.
[29] Ghorbani H, Khameneifar F. Construction of damagefree digital twin of damaged aero-engine blades for repair volume generation in remanufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77:102335.
[30] Miller D, Kemnitz R, Grandhi R, et al. Toward digital twin development for additively manufactured turbine blades with experimental and analytical methods[J].Structural and Multidisciplinary Optimization, 2022, 65(8): 227.
[31] Zhou Y, Xing T, Song Y, et al. Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling[J]. Journal of Manufacturing Systems, 2021, 58(suppl 1): 22-35.
[32] Chen Y, Jin L, Tang X, et al. Dynamic response of a composite fan blade excited instantaneously by multiple mfc actuators[J]. Aerospace, 2022, 9(6): 301.
[33] Zhang F L, Li L, Fan Y, et al. Dual-connected synchronized switch damping for vibration control of bladed disks in aero-engines[J]. Applied Sciences, 2020, 10(4):1478.
[34] Zhou B, Ke H W, Chen X, et al. Aero-engine blade vibration suppression method based on piezoelectric shunt damping technique[J]. Journal of Vibration and Shock,2020, 39(1): 209-215.