专题:制造强国建设

航空发动机复合材料叶片先进制造技术研究进展

  • 俞锐晨 ,
  • 姜金华 ,
  • 朱晓锦 ,
  • 张合生 ,
  • 高志远
展开
  • 上海大学机电工程与自动化学院,上海 200444
俞锐晨,硕士研究生,研究方向为复合材料叶片的振动主动监控技术,电子信箱:shuyrc99@shu.edu.cn

收稿日期: 2023-01-08

  修回日期: 2023-02-10

  网络出版日期: 2023-03-27

基金资助

国家自然科学基金项目(52175101)

Research progress of advanced manufacturing technology for aero-engine composite blades

  • YU Ruichen ,
  • JIANG Jinhua ,
  • ZHU Xiaojin ,
  • ZHANG Hesheng ,
  • GAO Zhiyuan
Expand
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Received date: 2023-01-08

  Revised date: 2023-02-10

  Online published: 2023-03-27

摘要

大规模采用复合材料叶片是目前航空工业实现航空发动机更高涵道比和减重的最有效途径。以复合材料航空发动机叶片的制造技术研究进展为主题,介绍了现阶段树脂基、金属基和陶瓷基复合材料航空发动机叶片的主流加工工艺;重点讨论了关键制造技术的发展现状和应用情况,包括树脂基复材叶片的预浸料/模压成型工艺和三维编织结/增强树脂传递模塑成型工艺、金属基复材叶片的模压成型、加压浇铸工艺和超塑成形/扩散连接工艺以及陶瓷基复合材料叶片的熔体渗透工艺;探讨了航空发动机复合材料叶片的发展趋势,并提出未来复合材料叶片关键制造技术的研究方向。

本文引用格式

俞锐晨 , 姜金华 , 朱晓锦 , 张合生 , 高志远 . 航空发动机复合材料叶片先进制造技术研究进展[J]. 科技导报, 2023 , 41(5) : 27 -33 . DOI: 10.3981/j.issn.1000-7857.2023.05.003

Abstract

Large-scale adoption of composite blades is the most effective way to achieve ultra-high bypass ratio and low weight of aero-engine in the aerospace industry. The research progress in the manufacturing technology for resin matrix, metal matrix, and ceramic matrix composite blades is discussed in this paper. The development and application situation of the common processing technology and key manufacturing technology of aero-engine composite blades are reviewed in detail, including prepreg/molding process and three-dimensional braided/reinforced resin transfer molding process of resin matrix composite blades, molding process, pressure casting process and superplastic forming/diffusion bonding process of metal matrix composite blades, and melt infiltration process of ceramic matrix composite blades. Finally, the trend of aero-engine composite blades is discussed and the research direction to further develop key manufacturing technology of composite blades is summarized.

参考文献

[1] Zhang S H, Cheng M, Song H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1):1-11.
[2] Huang Y, Li S C, Xiao G J, et al. Research progress of aero-engine blade materials and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35.
[3] 杨瑞, 齐哲, 杨金华, 等. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[4] 李军, 刘燕峰, 倪洪江, 等. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[5] Bochenek K, Basista M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications[J]. Progress in Aerospace Sciences,2015, 79: 136-146.
[6] Boyle R J, Gnanaselvam P, Parikh A H, et al. Design of stress constrained SiC/SiC ceramic matrix composite turbine blades[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2021, 143(5), doi:10.1115/1.4049776.
[7] Zhou H, Li X B, Zhang T, et al. Application progress on manufacturing technology of composite fan blades for aero-engine[J]. Aeronautical Manufacturing Technology,2022, 65(13): 84-91.
[8] 陈巍. 先进航空发动机树脂基复合材料技术现状与发展趋势[J]. 航空制造技术, 2016(5): 68-72.
[9] Ge J R, Liu Z F, Qiao J W, et al. Research progress on molding processes of fiber preforms and performances simulation of composites for aeronautical complex structures[J]. Aeronautical Manufacturing Technology, 2022, 65(16):14-30.
[10] Guan L X, Li J L, Jiao Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 748-759.
[11] 韦鑫, 荆云娟, 杨明杰, 等 . 航空发动机风扇叶片预制体研发现状及趋势[J]. 棉纺织技术, 2020, 48(8): 81-84.
[12] Gao J, Wu Z B, Kong Y, et al. Design and bird-strike resistance performance research of civil aircraft tail leading edge using different auxiliary spars[J]. Journal of Vibration and Shock, 2021, 40(8): 237-246.
[13] Mol Kavitha S, Salem S C, Sadiq A. Crashworthiness Enhancement of aluminum alloy used for leading edges of wing and empennage structures[J]. Journal of Aerospace Engineering, 2022, 35(6), doi: 10.1061/(ASCE)AS.1943-5525.0001477.
[14] Trofimov A, Le-Pavic J, Ravey C, et al. Multi-scale modeling of distortion in the non-flat 3D woven composite part manufactured using resin transfer molding[J].Composites Part A—Applied Science and Manufacturing, 2021, 140: 106145.
[15] Xiao Y, Xu J B, Wang M, et al. Multiscale model of the rtm process: From mesoscale anisotropic permeability of woven structures to macroscale resin impregnation[J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8269-8279.
[16] Zhu C, Wu N, Zhang Y F, et al. Tensile properties and failure mechanism of three-dimensional angle interlocking woven layup composites under tensile loading[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3167-3177.
[17] Kirby G H. Formation of ceramic matrix composite used for gas turbine Engine, involves introducing carbon yielding resin into open pore channels, heating melt infiltrated and melt extracted preform to produce elemental carbon and heating: 2018194690[P/OL]. [2022-12-01]. https://www.webofscience.com/wos/alldb/full-record/DIIDW:201855484V.
[18] Manicke P S, Walker B E, Ronk W R. Producing ceramic composite structure, useful as article including blade for gas turbine engine assembly, comprises providing reinforcing material and precursor slurry composition, impregnating the material with the composition, and drying: 2011150663[P/OL]. [2022-12-01]. https://www.webofscience.com/wos/alldb/full-record/DIIDW:2011H201-41.
[19] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016(21): 50-56.
[20] 杨金华, 董禹飞, 杨瑞, 等 . 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力, 2021(5): 56-59.
[21] Luo X, Xu Y L, Guo X J, et al. Research progress of ceramic matric composites turbine rotors for turbine engines[J]. Journal of Propulsion Technology, 2021, 42(1):230-240.
[22] 周何, 李小兵, 张婷, 等 . 航空发动机复合材料风扇叶片制造工艺应用进展[J]. 航空制造技术, 2022, 65(13):84-91.
[23] Dhimole V K, Chen Y, Serrao P, et al. A design feasibility study of a turbine blade disc interface (dovetail) made by four-directional braided ceramic matrix composite (SiC/SiC)[J]. International Journal of Aeronautical and Space Sciences, 2022, 23(1): 66-76.
[24] Xiang R J, Pan Z Z, Ouyang H, et al. A study of the vibration and lay-up optimization of rotating crossply laminated nanocomposite blades[J]. Composite Structures,2020, 235: 111775.
[25] 朱启晨, 陈勇, 肖贾光毅. 复合材料风扇叶片铺层设计方法研究[J]. 航空发动机, 2018, 44(3): 49-54.
[26] Li D C, Lu Z L, Tian X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022, 43(4): 525387.
[27] 唐天姿, 刘宁, 郭亚林. 中低温固化环氧复合材料研究进展[J]. 航天制造技术, 2021(3): 73-78.
[28] 许皓, 欧秋仁, 张帅, 等 . 低温固化非热压罐成型树脂及其复合材料性能[J]. 宇航材料工艺, 2021, 51(1): 50-54.
[29] Ghorbani H, Khameneifar F. Construction of damagefree digital twin of damaged aero-engine blades for repair volume generation in remanufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77:102335.
[30] Miller D, Kemnitz R, Grandhi R, et al. Toward digital twin development for additively manufactured turbine blades with experimental and analytical methods[J].Structural and Multidisciplinary Optimization, 2022, 65(8): 227.
[31] Zhou Y, Xing T, Song Y, et al. Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling[J]. Journal of Manufacturing Systems, 2021, 58(suppl 1): 22-35.
[32] Chen Y, Jin L, Tang X, et al. Dynamic response of a composite fan blade excited instantaneously by multiple mfc actuators[J]. Aerospace, 2022, 9(6): 301.
[33] Zhang F L, Li L, Fan Y, et al. Dual-connected synchronized switch damping for vibration control of bladed disks in aero-engines[J]. Applied Sciences, 2020, 10(4):1478.
[34] Zhou B, Ke H W, Chen X, et al. Aero-engine blade vibration suppression method based on piezoelectric shunt damping technique[J]. Journal of Vibration and Shock,2020, 39(1): 209-215.
文章导航

/