[1] EMSA. Annual overview of marine casualties and incidents 2018[R]. Lisbon: European Maritime Safety Agency,2018.
[2] EMSA. Preliminary annual overview of marine casualties and incidents 2014—2020[R]. Lisbon: European Maritime Safety Agency, 2021.
[3] 交通运输部 . 2018 年交通运输业发展统计公报[R]. 北京: 交通运输部, 2019.
[4] Fan S, Blanco-Davis E, Yang Z, et al. Incorporation of human factors into maritime accident analysis using a data driven Bayesian network[J]. Reliability Engineering and System Safety, 2020, 203: 107070.
[5] Fan S, Zhang J, Blanco-Davis E, et al. Effects of seafarers' emotion on human performance using bridge simulation[J]. Ocean Engineering, 2018, 170: 111-119.
[6] IMO. Regulatory scoping exercise for the use of maritime autonomous surface ships (MASS) [R]. London: Maritime Safety Committee, 2018.
[7] Bakdi A, Glad I K, Vanem E, et al. AIS-Based multiple vessel collision and grounding risk identification based on adaptive safety domain[J]. Journal of Marine Science and Engineering, 2019, 8(1): 5.
[8] Montewka J, Gil M, Wrobel K. Discussion on the article by Zhang & Meng entitled "Probabilistic ship domain with applications to ship collision risk assessment"[J].Ocean Engineering, 2020, 209: 107527.
[9] Zhou J, Wang C, Zhang A. A COLREGs-based dynamic navigation safety domain for unmanned surface vehicles:A case study of Dolphin-I[J]. Journal of Marine Science and Engineering, 2020, 8: 264.
[10] Szlapczynski R, Szłapczynska J. An analysis of domain-based ship collision risk parameters[J]. Ocean Engineering, 2016, 126: 47-56.
[11] Szlapczynski R, Niksa-Rynkiewicz T. A framework of a ship domain-based near-miss detection method using mamdani neuro-fuzzy classification[J]. Polish Maritime Research, 2018, 25: 14-21.
[12] Baran A, Fiskin R, Kisi H. A research on concept of ship safety domain[J]. TRANSNAV the International Journal on Marine Navigation and Safety of Sea Transportation, 2018, 12(1): 43-47.
[13] 周翔宇. 面向自主船舶的危险分析方法[D]. 大连: 大连海事大学, 2020.
[14] Zhou J, Ding F, Yang J X, et al. Navigation safety domain and collision risk index for decision support of collision avoidance of USVs[J]. nternational Journal of Naval Architecture and Ocean Engineering, 2021, 13: 340-350.
[15] Fujii Y, Tanaka K. Traffic capacity[J]. Journal of Navigation, 1971, 24(4): 543-552.
[16] Goodwin E M. A statistical study of ship domains[J].Journal of Navigation, 1975, 28(3): 328-344.
[17] Coldwell T G. Marine traffic behavior in restricted waters[J]. Journal of Navigation, 1983, 36(3): 430-444.
[18] Zhang L Y, Meng Q. Probabilistic ship domain with applications to ship collision risk assessment[J]. Ocean Engineering, 2019, 186: 106130.
[19] Im N, Luong T N. Potential risk ship domain as a danger criterion for real-time ship collision risk evaluation[J]. Ocean Engineering, 2019, 194: 106610.
[20] Cheng Z X, Xu X Z, Zeng X M, et al. A dynamic threedimensional ship domain model for vessels in ports waters[C]//2nd International Conference on Energy, Power and Electrical Engineering(EPEE 2017). Shanghai:DESTech, 2017: 257-265.
[21] Szlapczynski R, Szłapczynska J. Review of ship safety domains: Models and applications[J]. Ocean Engineering, 2017, 145: 277-289.
[22] Fiskin R, Nasiboglu E, Yardimci M O. A knowledgebased framework for two-dimensional(2D) asymmetrical polygonal ship domain[J]. Ocean Engineering, 2020,202: 107187.
[23] Hansen M G, Jenson T K, Lehn-Schiøler T, et al. Empirical ship domain based on AIS data[J]. Journal of Navigation, 2013, 66(6): 931-940.
[24] Zhao J S, Wu Z L, Wang F C. Comments on ship domains[J]. Journal of Navigation, 1993, 46(3): 422-436.
[25] Wang N. A novel analytical framework for dynamic quaternion ship domains[J]. Journal of Navigation, 2013, 66(2): 265-281.
[26] Liu J X, Zhou F, Li Z Z, et al. Dynamic ship domain models for capacity analysis of restricted water channels[J]. Journal of Navigation, 2016, 69(3): 481-503.
[27] Rawson A, Rogers E, Foster D, et al. Practical application of domain analysis: Port of London case study[J].Journal of Navigation, 2014, 67(2): 193-209.
[28] Rawson A, Brito M. A critique of the use of domain analysis for spatial collision risk assessment[J]. Ocean Engineering, 2021, 219: 108259.
[29] Szłapczyński R, Niksa-Rynkiewicz T. A framework of a ship domain-based near-miss detection method using mamdani neuro-fuzzy classification[J]. Polish Maritime Research, 2018, 25(Suppl 1): 14-21.
[30] Namgung H, Kim J S. Collision risk inference system for maritime autonomous surface ships using COLREGs rules compliant collision avoidance[J]. IEEE Access, 2021, 9: 7823-7835.
[31] Fiskin R, Atik O, Kisi H, et al. Fuzzy domain and metaheuristic algorithm-based collision avoidance control for ships: Experimental validation in virtual and real environment[J]. Ocean Engineering, 2021, 220: 108502.
[32] Kijima K, Furukawa Y. Automatic collision avoidance system using the concept of blocking area[C]//International Federation of Automatic Control(IFAC) Conference on Manoeuvring and Control of Marine Craft 2003.Schlossplatz: IFAC, 2003: 223-228.
[33] Pietrzykowski Z. Ship's fuzzy domain-A criterion for navigational safety in narrow fairways[J]. Journal of Navigation, 2008, 61(3): 499-514.
[34] Wang Y Y, Chin H C. An empirically-calibrated ship domain as a safety criterion for navigation in confined waters[J]. Journal of Navigation, 2016, 69(2): 257-276.
[35] Dinh G H, Im N K. The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area[J]. International Journal of e-Navigation and MaritimeEconomy, 2016, 4: 97-108.
[36] Wielgosz M. Ship domain in open sea areas and restricted waters: An analysis of influence of the available maneuvering area[J]. TRANSNAV the International Journal on Marine Navigation and Safety of Sea Transportation,2017, 11: 99-104.
[37] Pietrzykowski Z, Uriasz J. The ship domain-A criterion of navigational safety assessment in an open sea area[J].Journal of Navigation, 2009, 62(1): 93-108.
[38] He Y X, Jin Y, Huang L W, et al. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea[J]. Ocean Engineering, 2017,140: 281-291.
[39] Jensen T K, Hansen M G, Lehn-Schiøler T, et al. Free flow-efficiency of a one-way traffic lane between two pylons[J]. Journal of Navigation, 2013, 66(6): 941-951.
[40] 李永杰, 张瑞, 魏慕恒, 等 . 船舶自主航行关键技术研究现状与展望[J]. 中国舰船研究, 2021, 16(1): 32-44.
[41] Burmeister H C, Bruhn W, Rodseth O J, et al. Autonomous unmanned merchant vessel and its contribution towards the e-Navigation implementation: The MUNIN Perspective[J]. International Journal of e-Navigation and Maritime Economy, 2014, 1: 1-13.
[42] 周翔宇, 吴兆麟, 王凤武, 等 . 自主船的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19(6): 149-162.
[43] Porathe T. Maritime autonomous surface ships (MASS) and the COLREGs: Do we need quantified rules or is "the ordinary practice of seamen" specific enough? [J].TRANSNAV the International Journal on Maritime Navigation and Safety of Sea Transportation, 2019, 13(3):511-517.
[44] Felski A, Zwolak K. The ocean-going autonomous ship—challenges and threats[J]. Journal of Marine Science and Engineering, 2020, 8(1): 41.
[45] 李瑞 . 无人船的法律地位研究[J]. 中华海洋法学评论,2019(4): 149-190.
[46] Chang Y C, Zhang G, Wang N N. The international legal status of the unmanned maritime vehicles[J]. Marine Policy, 2020, 113: 103830.
[47] Zhou D, Zheng Z Y. Dynamic fuzzy ship domain considering the factors of own ship and other ships[J]. Journal of Navigation, 2019, 72(2): 467-482.
[48] 徐周华, 牟军敏, 季永清. 内河水域船舶领域三维模型的研究[J]. 武汉理工大学学报(交通科学与工程版),2004, 28(3): 380-383.
[49] Aykut N O, Akpinar B. Determining the dynamic draught for precise hydrographic surveying[J]. Ocean Engineering, 2013, 62: 38-44.
[50] Ding F, Zhou J, Zhang J L, et al. Continuous depth datum-based dynamic bathymetric model: Construction and application[J]. Journal of Coastal Research, 2020,111(Suppl 1): 156-161.