综述

SPARC计划II期:聚焦迷走神经

  • 辛陈 ,
  • 荣培晶 ,
  • 李少源 ,
  • 王瑜 ,
  • 陈瑜 ,
  • 陈建德 ,
  • 魏玮 ,
  • 丛斌
展开
  • 1. 中国中医科学院针灸研究所,北京 100700
    2. 密歇根大学胃肠病和肝病学部,安娜堡 48109
    3. 中国中医科学院望京医院,北京 100102
    4. 河北医科大学法医学系,石家庄 050017
辛陈,博士研究生,研究方向为针灸效应机制,电子信箱:18052168935@163.com

收稿日期: 2022-05-28

  修回日期: 2022-12-02

  网络出版日期: 2023-04-23

基金资助

国家自然科学基金项目(82174519);国家重点研发计划专项(2022YFC3500500,2022YFC3500501);国家中医药管理局中医药传承与创新“百千万”人才工程(岐黄工程)岐黄学者项目([2021]203号)

SPARC Phase II: Focusing on the vagus nerve

  • XIN Chen ,
  • RONG Peijing ,
  • LI Shaoyuan ,
  • WANG Yu ,
  • CHEN Yu ,
  • CHEN Jiande ,
  • WEI Wei ,
  • CONG Bin
Expand
  • 1. Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
    2. Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor 48109, USA
    3. Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
    4. Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China

Received date: 2022-05-28

  Revised date: 2022-12-02

  Online published: 2023-04-23

摘要

美国国立卫生院(NIH)于 2016 年启动的“刺激外周神经缓解疾病症状”(SPARC)计划,已于2022年开展II期研究。与I期关注整体外周神经系统相比,SPARC计划II期的最大特点在于专注研究迷走神经。通过梳理迷走神经刺激(VNS)临床应用现状、迷走神经与炎症反射、迷走神经与内感受系统等前沿进展,探索了SPARC计划II期聚焦迷走神经的原因,提出了迷走神经感觉神经元的识别和研究范式,对揭示针灸作用于体表-脏腑的机制原理具有启发和借鉴意义。

本文引用格式

辛陈 , 荣培晶 , 李少源 , 王瑜 , 陈瑜 , 陈建德 , 魏玮 , 丛斌 . SPARC计划II期:聚焦迷走神经[J]. 科技导报, 2023 , 41(6) : 121 -126 . DOI: 10.3981/j.issn.1000-7857.2023.06.012

Abstract

"Stimulating Peripheral Activity to Relieve Conditions" program (SPARC), which was initiated by the National Institutes of Health (NIH) in 2016, has been proceed to the next stage in 2022. Compared with the first stage, which focused on the peripheral nervous system as a whole, the most important feature of the SPARC Phase II is its focus on the vagus nerve. This paper explores the reasons for the focus of Phase II by sorting out the current status of the clinical application of vagus nerve stimulation (VNS), the vagus nerve and inflammatory reflexes, and the vagus nerve and the introception system. More importantly, the identification and study paradigm of vagal sensory neurons is enlightening and informative to reveal the mechanism of acupuncture acting on the body's surface and visceral organs.

参考文献

[1] 马思明, 杨娜娜, 范浩, 等. 美国SPARC计划对中医针灸研究的挑战与启发[J]. 中国针灸, 2020, 40(4): 439-442.
[2] 宋思敏, 刘阳阳, 郭义, 等. 美国外周神经刺激对针灸发展模式的启示[J]. 山东中医杂志, 2019, 38(8): 721-724.
[3] 王晓宇, 于清泉, 何伟, 等 . 从“分子药”到“电子药”:SPARC计划和针刺研究[J]. 针刺研究, 2019, 44(3): 157-160.
[4] Famm K, Litt B, Tracey K J, et al. Drug discovery: A jump-start for electroceuticals[J]. Nature, 2013, 496(7444): 159-161.
[5] Birmingham K, Gradinaru V, Anikeeva P, et al. Bioelectronic medicines: A research roadmap[J]. Nature Reviews Drug Discovery, 2014, 13(6): 399-400.
[6] Dugan P, Devinsky O. Epilepsy: Guidelines on vagus nerve stimulation for epilepsy[J]. Nature Reviews Neurology, 2013, 9(11): 611-612.
[7] Austelle C W, O'Leary G H, Thompson S, et al. A comprehensive review of vagus nerve stimulation for depression[J]. Neuromodulation, 2022, 25(3): 309-315.
[8] Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: Present and future[J]. Clinical Science, 2022, 136(9): 695-709.
[9] Rosso P, Iannitelli A, Pacitti F, et al. Vagus nerve stimulation and neurotrophins: A biological psychiatric perspective[J]. Neuroscience and Biobehavioral Reviews, 2020, 113: 338-353.
[10] Schwartz P J, de Ferrari G M, Sanzo A, et al. Long term vagal stimulation in patients with advanced heart failure: First experience in man[J]. European Journal of Heart Failure, 2008, 10(9): 884-891.
[11] Ikramuddin S, Blackstone R P, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: The ReCharge randomized clinical trial[J]. Journal of the American Medical Association, 2014, 312(9): 915-922.
[12] Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device[J]. Nature Communications, 2018, 9(1): 5349.
[13] Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs[J]. Appetite, 2010, 55(2): 245-252.
[14] Wang Y, Li S Y, Wang D, et al. Transcutaneous auricular vagus nerve stimulation: From concept to application[J]. Neuroscience Bulletin, 2021, 37(6): 853-862.
[15] Wang L, Wang Y, Wang Y, et al. Transcutaneous auricular vagus nerve stimulators: A review of past, present, and future devices[J]. Expert Review of Medical Devices, 2022, 19(1): 43-61.
[16] VanderPluym J H, Halker Singh R B, Urtecho M, et al. Acute treatments for episodic migraine in adults: A systematic review and meta-analysis[J]. Journal of the American Medical Association, 2021, 325(23): 2357-2369.
[17] Schindler E, Burish M J. Recent advances in the diagnosis and management of cluster headache[J]. British Medical Journal, 2022, 376: e059577.
[18] Horbach T, Thalheimer A, Seyfried F, et al. Abiliti closed-loop gastric electrical stimulation system for treatment of obesity: Clinical results with a 27-month follow-up[J]. Obesity Surgery, 2015, 25(10): 1779-1787.
[19] Apovian C M, Shah S N, Wolfe B M, et al. Two-year outcomes of vagal nerve blocking (vbloc) for the treatment of obesity in the recharge trial[J]. Obesity Surgery, 2017, 27(1): 169-176.
[20] Tracey K J. The inflammatory reflex[J]. Nature, 2002,420(6917): 853-859.
[21] Borovikova L V, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J]. Nature, 2000, 405(6785): 458-462.
[22] Bernik T R, Friedman S G, Ochani M, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway[J]. Journal of Experimental Medicine, 2002, 195(6): 781-788.
[23] Martelli D, Yao S T, McKinley M J, et al. Reflex control of inflammation by sympathetic nerves, not the vagus[J]. The Journal of Physiology, 2014, 592(7): 1677-1686.
[24] Komegae E N, Farmer D, Brooks V L, et al. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway[J]. Brain, behavior, and immunity, 2018, 73: 441-449.
[25] Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation[J]. The Journal of Physiology, 2016, 594(20): 5781-5790.
[26] Udit S, Blake K, Chiu I M. Somatosensory and autonomic neuronal regulation of the immune response[J]. Nature Reviews Neuroscience, 2022, 23(3): 157-171.
[27] Wang J Y, Zhang Y, Chen Y, et al. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF- κB signal pathway[J]. Journal of Neuroinflammation, 2021, 18(1): 291.
[28] Pavlov V A, Tracey K J. The vagus nerve and the inflammatory reflex-linking immunity and metabolism[J]. Nature Reviews Endocrinology, 2012, 8(12): 743-754.
[29] Chen W G, Schloesser D, Arensdorf A M, et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self[J]. Trends in Neurosciences, 2021, 44(1): 3-16.
[30] Prescott S L, Liberles S D. Internal senses of the vagus nerve[J]. Neuron, 2022, 110(4): 579-599.
[31] Berntson G G, Khalsa S S. Neural circuits of interoception[J]. Trends in Neurosciences, 2021, 44(1): 17-28.
[32] Min S, Chang R B, Prescott S L, et al. Arterial baroreceptors sense blood pressure through decorated aortic claws[J]. Cell Reports, 2019, 29(8): 2192-2201.e3.
[33] Hajishafiee M, Bitarafan V, Feinle-Bisset C. Gastrointestinal sensing of meal-related signals in humans, and dysregulations in eating-related disorders[J]. Nutrients, 2019, 11(6): 1298.
[34] Terry N, Margolis K G. Serotonergic mechanisms regulating the gi tract: Experimental evidence and therapeutic relevance[J]. Handbook of Experimental Pharmacology, 2017, 239: 319-342.
[35] Zhao Q, Yu C D, Wang R, et al. A multidimensional coding architecture of the vagal interoceptive system[J]. Nature, 2022, 603(7903): 878-884.
[36] Weng H Y, Feldman J L, Leggio L, et al. Interventions and manipulations of interoception[J]. Trends in Neurosciences, 2021, 44(1): 52-62.
[37] Torres-Rosas R, Yehia G, Peña G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture[J]. Nature Medicine, 2014, 20(3): 291-295.
[38] Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis[J]. Nature, 2021, 598(7882): 641-645.
[39] Ulloa L. Electroacupuncture activates neurons to switch off inflammation[J]. Nature, 2021, 598(7882): 573-574.
[40] Ulloa L, Quiroz-Gonzalez S, Torres-Rosas R. Nerve stimulation: Immunomodulation and control of inflammation[J]. Trends in Molecular Medicine, 2017, 23(12): 1103-1120.
[41] Sharma N, Flaherty K, Lezgiyeva K, et al. The emergence of transcriptional identity in somatosensory neurons[J]. Nature, 2020, 577(7790): 392-398.

文章导航

/