SPARC计划II期:聚焦迷走神经
收稿日期: 2022-05-28
修回日期: 2022-12-02
网络出版日期: 2023-04-23
基金资助
国家自然科学基金项目(82174519);国家重点研发计划专项(2022YFC3500500,2022YFC3500501);国家中医药管理局中医药传承与创新“百千万”人才工程(岐黄工程)岐黄学者项目([2021]203号)
SPARC Phase II: Focusing on the vagus nerve
Received date: 2022-05-28
Revised date: 2022-12-02
Online published: 2023-04-23
辛陈 , 荣培晶 , 李少源 , 王瑜 , 陈瑜 , 陈建德 , 魏玮 , 丛斌 . SPARC计划II期:聚焦迷走神经[J]. 科技导报, 2023 , 41(6) : 121 -126 . DOI: 10.3981/j.issn.1000-7857.2023.06.012
Key words: SPARC; peripheral nerve; vagus nerve; bioelectronic medicines; acupuncture
[1] 马思明, 杨娜娜, 范浩, 等. 美国SPARC计划对中医针灸研究的挑战与启发[J]. 中国针灸, 2020, 40(4): 439-442.
[2] 宋思敏, 刘阳阳, 郭义, 等. 美国外周神经刺激对针灸发展模式的启示[J]. 山东中医杂志, 2019, 38(8): 721-724.
[3] 王晓宇, 于清泉, 何伟, 等 . 从“分子药”到“电子药”:SPARC计划和针刺研究[J]. 针刺研究, 2019, 44(3): 157-160.
[4] Famm K, Litt B, Tracey K J, et al. Drug discovery: A jump-start for electroceuticals[J]. Nature, 2013, 496(7444): 159-161.
[5] Birmingham K, Gradinaru V, Anikeeva P, et al. Bioelectronic medicines: A research roadmap[J]. Nature Reviews Drug Discovery, 2014, 13(6): 399-400.
[6] Dugan P, Devinsky O. Epilepsy: Guidelines on vagus nerve stimulation for epilepsy[J]. Nature Reviews Neurology, 2013, 9(11): 611-612.
[7] Austelle C W, O'Leary G H, Thompson S, et al. A comprehensive review of vagus nerve stimulation for depression[J]. Neuromodulation, 2022, 25(3): 309-315.
[8] Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: Present and future[J]. Clinical Science, 2022, 136(9): 695-709.
[9] Rosso P, Iannitelli A, Pacitti F, et al. Vagus nerve stimulation and neurotrophins: A biological psychiatric perspective[J]. Neuroscience and Biobehavioral Reviews, 2020, 113: 338-353.
[10] Schwartz P J, de Ferrari G M, Sanzo A, et al. Long term vagal stimulation in patients with advanced heart failure: First experience in man[J]. European Journal of Heart Failure, 2008, 10(9): 884-891.
[11] Ikramuddin S, Blackstone R P, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: The ReCharge randomized clinical trial[J]. Journal of the American Medical Association, 2014, 312(9): 915-922.
[12] Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device[J]. Nature Communications, 2018, 9(1): 5349.
[13] Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs[J]. Appetite, 2010, 55(2): 245-252.
[14] Wang Y, Li S Y, Wang D, et al. Transcutaneous auricular vagus nerve stimulation: From concept to application[J]. Neuroscience Bulletin, 2021, 37(6): 853-862.
[15] Wang L, Wang Y, Wang Y, et al. Transcutaneous auricular vagus nerve stimulators: A review of past, present, and future devices[J]. Expert Review of Medical Devices, 2022, 19(1): 43-61.
[16] VanderPluym J H, Halker Singh R B, Urtecho M, et al. Acute treatments for episodic migraine in adults: A systematic review and meta-analysis[J]. Journal of the American Medical Association, 2021, 325(23): 2357-2369.
[17] Schindler E, Burish M J. Recent advances in the diagnosis and management of cluster headache[J]. British Medical Journal, 2022, 376: e059577.
[18] Horbach T, Thalheimer A, Seyfried F, et al. Abiliti closed-loop gastric electrical stimulation system for treatment of obesity: Clinical results with a 27-month follow-up[J]. Obesity Surgery, 2015, 25(10): 1779-1787.
[19] Apovian C M, Shah S N, Wolfe B M, et al. Two-year outcomes of vagal nerve blocking (vbloc) for the treatment of obesity in the recharge trial[J]. Obesity Surgery, 2017, 27(1): 169-176.
[20] Tracey K J. The inflammatory reflex[J]. Nature, 2002,420(6917): 853-859.
[21] Borovikova L V, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J]. Nature, 2000, 405(6785): 458-462.
[22] Bernik T R, Friedman S G, Ochani M, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway[J]. Journal of Experimental Medicine, 2002, 195(6): 781-788.
[23] Martelli D, Yao S T, McKinley M J, et al. Reflex control of inflammation by sympathetic nerves, not the vagus[J]. The Journal of Physiology, 2014, 592(7): 1677-1686.
[24] Komegae E N, Farmer D, Brooks V L, et al. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway[J]. Brain, behavior, and immunity, 2018, 73: 441-449.
[25] Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation[J]. The Journal of Physiology, 2016, 594(20): 5781-5790.
[26] Udit S, Blake K, Chiu I M. Somatosensory and autonomic neuronal regulation of the immune response[J]. Nature Reviews Neuroscience, 2022, 23(3): 157-171.
[27] Wang J Y, Zhang Y, Chen Y, et al. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF- κB signal pathway[J]. Journal of Neuroinflammation, 2021, 18(1): 291.
[28] Pavlov V A, Tracey K J. The vagus nerve and the inflammatory reflex-linking immunity and metabolism[J]. Nature Reviews Endocrinology, 2012, 8(12): 743-754.
[29] Chen W G, Schloesser D, Arensdorf A M, et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self[J]. Trends in Neurosciences, 2021, 44(1): 3-16.
[30] Prescott S L, Liberles S D. Internal senses of the vagus nerve[J]. Neuron, 2022, 110(4): 579-599.
[31] Berntson G G, Khalsa S S. Neural circuits of interoception[J]. Trends in Neurosciences, 2021, 44(1): 17-28.
[32] Min S, Chang R B, Prescott S L, et al. Arterial baroreceptors sense blood pressure through decorated aortic claws[J]. Cell Reports, 2019, 29(8): 2192-2201.e3.
[33] Hajishafiee M, Bitarafan V, Feinle-Bisset C. Gastrointestinal sensing of meal-related signals in humans, and dysregulations in eating-related disorders[J]. Nutrients, 2019, 11(6): 1298.
[34] Terry N, Margolis K G. Serotonergic mechanisms regulating the gi tract: Experimental evidence and therapeutic relevance[J]. Handbook of Experimental Pharmacology, 2017, 239: 319-342.
[35] Zhao Q, Yu C D, Wang R, et al. A multidimensional coding architecture of the vagal interoceptive system[J]. Nature, 2022, 603(7903): 878-884.
[36] Weng H Y, Feldman J L, Leggio L, et al. Interventions and manipulations of interoception[J]. Trends in Neurosciences, 2021, 44(1): 52-62.
[37] Torres-Rosas R, Yehia G, Peña G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture[J]. Nature Medicine, 2014, 20(3): 291-295.
[38] Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis[J]. Nature, 2021, 598(7882): 641-645.
[39] Ulloa L. Electroacupuncture activates neurons to switch off inflammation[J]. Nature, 2021, 598(7882): 573-574.
[40] Ulloa L, Quiroz-Gonzalez S, Torres-Rosas R. Nerve stimulation: Immunomodulation and control of inflammation[J]. Trends in Molecular Medicine, 2017, 23(12): 1103-1120.
[41] Sharma N, Flaherty K, Lezgiyeva K, et al. The emergence of transcriptional identity in somatosensory neurons[J]. Nature, 2020, 577(7790): 392-398.
/
〈 |
|
〉 |