论文

文昌航天发射场室内外可培养微生物的分离与鉴定

  • 刘倩倩 ,
  • 姚琼 ,
  • 王宁 ,
  • 赵永 ,
  • 白苗苗 ,
  • 冯亚丽 ,
  • 陈娜娜 ,
  • 肖葵
展开
  • 1. 北京科技大学新材料技术研究院腐蚀与防护中心,北京 100083
    2. 西昌卫星发射中心,西昌 615000
刘倩倩,博士研究生,研究方向为微生物腐蚀,电子信箱:18811343972@126.com

收稿日期: 2022-06-20

  修回日期: 2022-11-25

  网络出版日期: 2023-04-27

Isolation and identification of indoor and outdoor culturable microorganisms in Wenchang Spacecraft Launch Site

  • LIU Qianqian ,
  • YAO Qiong ,
  • WANG Ning ,
  • ZHAO Yong ,
  • BAI Miaomiao ,
  • FENG Yali ,
  • CHEN Nana ,
  • XIAO Kui
Expand
  • 1. Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
    2. Xichang Satellite Launch Center, Xichang 615000, China

Received date: 2022-06-20

  Revised date: 2022-11-25

  Online published: 2023-04-27

Supported by

国家自然科学基金项目(51971032,52071019)

摘要

空间站中的微生物可能会威胁到宇航员的健康和设备的可靠性,影响空间站的长期在轨运行。航天器的AIT厂房(总装、集成、测试)、运输和发射环境是中国空间站主要的地面微生物污染源,采用自然沉降法收集了文昌发射场AIT厂房、加注厂房、员工宿舍、发射塔半封闭厂坪、发射塔通风井、环境试验站 6个区域的空气微生物样本,并运用传统的培养法和Sanger测序法对菌株进行了分离鉴定。通过对生物样品的分离纯化,共获得了35株细菌和57株真菌。菌株的基因序列分析表明优势细菌属有芽孢杆菌属(Bacillus)和假单胞菌属(Pseudomonas),优势真菌属有弯孢属(Curvularia)、曲霉属(Aspergillus)和青霉属(Penicillium)。部分优势菌对空间站内部的系统和设备有潜在的微生物腐蚀危害。

本文引用格式

刘倩倩 , 姚琼 , 王宁 , 赵永 , 白苗苗 , 冯亚丽 , 陈娜娜 , 肖葵 . 文昌航天发射场室内外可培养微生物的分离与鉴定[J]. 科技导报, 2023 , 41(7) : 114 -126 . DOI: 10.3981/j.issn.1000-7857.2023.07.012

Abstract

Microorganisms in space station may threaten the health of astronauts and reliability of equipment and affect longterm on-orbit operation of the space station. AIT(assembly, integration, testing) center, transportation and launch environment of spacecraft are the main microbial pollution sources of China's space station. Therefore, it is necessary to conduct comprehensive microbial monitoring of the plant and outdoor environment of Wenchang launch site. Samplings were collected by Petri plate gravitational settling from spacecraft assembly and test clean-room and other five surrounding areas. The strains were identified using traditional culture-based and Sanger dideoxy sequencing technology. Analysis of isolated strains showed that Bacillus sp. and Pseudomonas sp. were the dominant airborne bacterial genus whereas Curvularia sp., Aspergillus sp., and Penicillium sp. dominated the fungal population. Some of the dominant microbes have potential microbial corrosion hazards to the equipment and structures of the space station. The results can provide bacteria and fungi references for space microbial corrosion research in China and facilitate targeted biological safety prevention.

参考文献

[1] Thirsk R, Kuipers A, Mukai C, et al. The space-flight environment: The International Space Station and beyond[J].Canadian Medical Association Journal, 2009, 180(12):1216-1220.
[2] Novikova N, Boever P, Poddubko S, et al. Survey of environmental biocontamination on board the International Space Station[J]. Research in Microbiology, 2006, 157(1):5-12.
[3] Novikova N D. Review of the knowledge of microbial contamination of the Russian manned spacecraft[J]. Microbial Ecology, 2004, 47(2): 127-132.
[4] 刘长庭, 常德. 空间微生物学基础与应用研究[M]. 北京: 北京大学医学出版社, 2016.
[5] Klintworth R, Reher H J, Viktorov A N, et al. Biological induced corrosion of materials II: New test methods and experiences from Mir station[J]. Acta Astronautica, 1999, 44(7): 569-578.
[6] Weir N, Wilson M, Yoets A, et al. Microbiological characterization of the international space station water processor assembly external filter assembly S/N 01[C]//42nd International Conference on Environmental Systems. San Diego: AIAA, 2012: 3595.
[7] Crucian B, Babiak A, Johnston S, et al. Incidence of clinical symptoms during long-duration orbital spaceflight[J]. International Journal of General Medicine, 2016, 9: 383-391.
[8] Dunn C, Boyd M, Orengo I. Dermatologic manifestations in spaceflight: A review[J]. Dermatology Online Journal, 2018, 24(11): 1-8.
[9] Novikova N D, Polikarpov N A, Poddubko S, et al. The results of microbiological research of environmental microflora of orbital station Mir[R]. Washington DC: SAE Technical Papers, 2001.
[10] Alekhova T A, Aleksandrova A A, Novozhilova T I, et al. Monitoring of microbial degraders in manned space stations[J]. Applied Biochemistry and Microbiology, 2005, 41(4): 435-443.
[11] Checinska A, Probst A J, Vaishampayan P, et al. Microbiomes of the dust particles collected from the international space station and spacecraft assembly facilities[J]. Microbiome, 2015, 3(1): 1-18.
[12] Nicholson W L, Schuerger A C, Race M S. Migrating microbes and planetary protection[J]. Trends in Microbiology, 2009, 17(9): 389-392.
[13] Mora M, Mahnert A, Koskinen K, et al. Microorganisms in confined habitats: Microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the international space station[J]. Frontiers in Microbiology, Frontiers, 2016, 7: 1573.
[14] Moissl C, Osman S, La Duc M T. Molecular bacterialcommunity analysis of clean rooms where spacecraft are assembled[J]. Fems Microbiology Ecology, 2007, 61(3): 509-521.
[15] 陆月盈, 杨建楼, 付玉明, 等 . 航天器组装环境中极端微生物的筛选与特性[J]. 应用与环境生物学报, 2021(1): 1-13.
[16] 张文德, 王艳发, 马珺, 等 . 航天器 AIT 厂房环境中嗜极微生物的筛选与鉴定[J]. 应用与环境生物学报, 2020, 26(4): 766-774.
[17] 张兰涛, 魏传锋, 白梵露 . 载人航天器 AIT中心微生物分布特征分析[J]. 航天器环境工程, 2014, 31(4): 415-419.
[18] Rcheulishvili N, Papukashvili D, Shakir Y, et al. Acid and aluminium-tolerant microbes isolated from China
space station assembly cleanroom surfaces and identified by 16S rRNA/ITS sequencing and MALDI-TOF MS[J]. International Journal of Astrobiology, 2021, 20(2):133-141.
[19] Lovinger D, White G, Weight F. NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 1990, 10(4): 1372-1379.
[20] Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780.
[21] Dereeper A, Audic S, Claverie J M, et al. BLAST-EXPLORER helps you building datasets for phylogenetic analysis[J]. BMC Evolutionary Biology, 2010, 10(1): 1-6.
[22] Trifinopoulos J, Nguyen L-T, Von Haeseler A, et al.W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis[J]. Nucleic Acids Research, 2016, 44(W1): W232-W235.
[23] Wei J G, Xu T, Guo L D, et al. Endophytic Pestalotiopsis species associated with plants of Podocarpaceae, Theaceae and Taxaceae in southern China[J]. Fungal Diversity, 2007, 24(1): 55-74.
[24] Zhang Y, Zhang L, Li Z, et al. Microbiomes of China's space station during assembly, integration, and test operations[J]. Microbial Ecology, 2019, 78(3): 631-650.
[25] Checinska Sielaff A, Urbaniak C, Mohan G B M, et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces[J]. Microbiome, 2019, 7(1): 1-21.
[26] Pierson D L. Microbial contamination of spacecraft[J]. Gravitational and Space Research, 2001, 14(2): 1-6.
[27] Fan Q, Fu L. Corrosion behavior of 7075-t6 aluminum alloy in the presence of aspergillus niger[J]. International Journal of Electrochemical Science, 2021, 16: 9.
[28] Dai X, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger[J]. International Biodeterioration and Biodegradation, 2016, 115: 1-10.
[29] Zhang T, Wang J, Zhang G, et al. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate[J]. Corrosion Science, 2020, 176: 108930.
[30] Wang J, Bai Z, Xiao K, et al. Effect of static magnetic field on mold corrosion of printed circuit boards[J]. Bioelectrochemistry, 2020, 131: 107394.
[31] Probst A, Facius R, Wirth R, et al. Validation of a Nylon-Flocked-Swab protocol for efficient recovery of bacterial spores from smooth and rough surfaces[J]. Applied and Environmental Microbiology, 2010, 76(15): 5148-5158.
[32] Debus A. The European standard on planetary protection requirements[J]. Research in Microbiology, 2006, 157(1): 13-18.
[33] Zhang Y, Xin C, Wang X, et al. Detection of microorganism from China's spacecraft assembly cleanroom[J]. Acta Astronautica, 2020, 166: 545-547.
[34] Newcombe D A, La Duc M T, Vaishampayan P, et al. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room[J]. International Journal of Astrobiology, 2008, 7(3/4): 223-236.
[35] Whyte W, Hejab M. Particle and microbial airborne dispersion from people[J]. European Journal of Parenteral and Pharmaceutical Sciences, 2007, 12(2): 39-46.
[36] Vaishampayan P, Osman S, Andersen G, et al. High Density 16S microarray and clone library-based microbial community composition of the phoenix spacecraft assembly clean room[J]. Astrobiology, 2010, 10(5): 499-508.
[37] Stieglmeier M, Rettberg P, Barczyk S, et al. Abundance and diversity of microbial inhabitants in european spacecraft-associated clean rooms[J]. Astrobiology, 2012, 12(6): 572-585.
[38] 张文德, 赵一夔, 印红, 等 . 航天器 AIT 中心空气霉菌特性研究[J]. 中国空间科学技术, 2019, 39(5): 76-86.
[39] Mahnert A, Vaishampayan P, Probst A J, et al. Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes[J]. PLoS One, 2015, 10(8): 1-20.
文章导航

/