[1] Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. The New England Journal of Medicine, 2020, 382(16): 1564-1567.
[2] Hu H, Wang J, Deng C, et al. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities[J]. Journal of Materials Science, 2018, 53(20): 14250-14261.
[3] Hu H, Xu J, Deng C, et al. 3D multilayered Bi4O5Br2 nanoshells displaying excellent visible light photocatalytic degradation behaviour for resorcinol[J]. Micro & Nano Letters, 2018, 13(8): 1121-1125.
[4] Hu H, Wang M, Deng C, et al. Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties[J]. Materials Letters, 2018, 224: 75-77.
[5] Hu H, Deng C, Sun M, et al. Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red[J]. Journal of Porous Materials, 2019, 26(6): 1743-1753.
[6] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299.
[7] Tsai M L, Su S H, Chang J. K, et al. Monolayer MoS2 Heterojunction Solar Cells[J]. ACS Nano, 2014, 8(8): 8317-8322.
[8] Morales-Guio C G, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681.
[9] Xie Y L, Li Z X, Xu Z G, et al. Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications[J]. Electrochemistry Communications, 2011, 13(8): 788-791.
[10] Cai H, You Q, Hu Z, et al. Fabrication and correlation between photoluminescence and photoelectrochemical properties of vertically aligned ZnO coated TiO2 nanotube arrays[J]. Solar Energy Materials and Solar Cells, 2014, 123: 233-238.
[11] Miles D O, Lee C S, Cameron P J, et al. Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells[J]. Journal of Power Sources, 2016, 325: 365-374.
[12] Ma Q, Ma S, Huang Y M. Enhanced photovoltaic performance of dye sensitized solar cell with ZnO nanohoneycombs decorated TiO2 photoanode[J]. Materials Letters, 2018, 218: 237-240.
[13] 何伟伟, 宗宇恒, 乐恢榕. GO -Ag-CH溶液涂层板抗病毒实验研究[R]. 北京: 中科世生(北京)医药科技有限公司检测报告, 2021-08-13.
[14] Besinis A, Hadi S D, Le H R, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings[J]. Nanotoxicology, 2017, 11(3): 327-338.
[15] Danookdharree U, Le H R, Tredwin C. The effect of initial etching sites on the morphology of anodised TiO2 nanotubes on Ti-6Al-4V alloy[J]. Journal of the Electrochemical Society, 2015,162(10): 213-222.
[16] Gunputh U F, Le H R, Handy R D, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Materials Science and Engineering C-Materials for Biological Applications, 2018, 91: 638-644.
[17] Gunputh U F, Le H R, Besinis A, et al. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus[J]. International Journal of Nanomedicine, 2019, 14: 3583.
[18] Gunputh U F, Le H R, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus[J]. Nanotoxicology, 2020, 14(1): 97-110.
[19] Salaie R N, Besinis A, Le H R, et al. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells[J]. Materials Science and Engineering C-Materials for Biological Applications, 2020, 107: 110210.
[20] 刘跃顺, 谢巧峰, 张武陵 . 抗菌薄膜及其制造方法:CN1515605[P]. 2004-07-28.
[21] 李建雄, 赖维新, 王文伟 . 抗菌薄膜及其双向拉伸工艺: CN1445264[P]. 2003-10-01.
[22] 徐晓玲, 范希梅, 陈丹 等. 纳米杂化T-ZnOw抗菌与环境 净 化 材 料 及 其 应 用 研 究 [EB/OL]. (2015-05-16)[2021-08-28]. http://www.kjj.com.cn/index.php?m=content&c=index&a=show&catid=347&id=1993.
[23] Zhao Q, Liu C, Su X, et al. Antibacterial characteristics of electroless plating Ni-P-TiO2 coatings[J]. Applied Surface Science, 2013, 274: 101-104.
[24] Kato Y F H. Aluminum or aluminum alloy material having excellent antimicrobial property and its production: JPH10280191A[P]. 1998-10-20.
[25] Champagne V K, Helfritch D J. A demonstration of the antimicrobial effectiveness of various copper surfaces[J].Journal of Biological Engineering, 2013, 7(1): 1-7.
[26] Arconada N, Durán A, Suárez S, et al. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel[J]. Applied Catalysis B: Environmental, 2009, 86(1-2): 1-7.
[27] 刘文芳, 邢易, 赵之平. 一种具有抗菌功能的防水透气材料及其制备方法: CN102786709A[P]. 2012-11-21.
[28] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性 中的应用[J], 化学进展, 2015, 27(2/3): 212-219.
[29] Kawashita M. Development and evaluation of the properties of functional ceramic microspheres for biomedical applications[J]. Journal of the Ceramic Society of Japan, 2018, 126(1): 1-7.
[30] Sciancalepore C, Bondioli F. Durability of SiO2-TiO2 photocatalytic coatings on ceramic tiles[J]. International Journal of Applied Ceramic Technology, 2015, 12(3): 679-684.
[31] Sciancalepore C, Manfredini T, Bondioli F. Antibacterial and self-cleaning coatings for silicate ceramics: A review[C]//Advances in Science and Technology. Zurich, Suritzerland: Trans Tech Publications Ltd, 2014, 92: 90-99.
[32] Fadeeva I V, Lazoryak B I, Davidova G A, et al. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications[J]. Materials Science and Engineering C-Materials for Biological Applications, 2021, 129: 112410.
[33] Bedair T M, Heo Y, Ryu J, et al. Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications[J]. Biomaterials Science, 2021, 9: 1903-1923.
[34] Tang Q G, Wang L J, Li J Y, et al. Mechanism and Performance Analysis of Easy-cleaning Ceramics[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2011, 178: 180-184.
[35] 柯善军, 田维, 蒙臻明, 等 . 一种抗菌陶瓷砖及其制备方法: CN110698227A[P]. 2020-01-17.
[36] Wang Q P, Guo X X, Wu W H, et al. Preparation of fine Ag2WO4 antibacterial powders and its application in the sanitary ceramics[C]//Advanced Materials Research. Zurich,Suritzerland: Trans Tech Publications Ltd, 2011, 284: 1321-1325.
[37] Uzgur E, Bayrakci F, Koparal S, et al. Applications of calcium phosphate based antibacterial ceramics on sanitary and tile wares[C]//Key Engineering Materials. Zurich, Suritzerland: Trans Tech Publications Ltd, 2004, 264: 1573-1576.
[38] 刘子传, 郑经堂, 赵东风, 等 . 金属离子掺杂改性纳米TiO2 的能带结构及其光催化性能[J]. 硅酸盐学报, 2013, 41(3): 402-403.
[39] 贺鹏, 戴武斌, 饶培文, 等 . TiO2光催化型抗菌陶瓷的制备及其性能研究[J]. 中国陶瓷, 2016, 52(4): 24-28.
[40] Liang W J, Li J, Jin Y Q. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV[J]. Building Environment, 2012, 51: 345-350.
[41] Kayani Z N, Rahim S, Sagheer R, et al. Assessment of antibacterial and optical features of sol-gel dip coated La doped TiO2 thin films[J]. Materials Chemistry and Physics, 2020, 250: 123217.
[42] 何伟伟, 赵云, 乐恢榕 . 光催化 CuO-NiO 核-壳结构复合抗菌剂制备及其在抗菌陶瓷上的应用研究[R]. 北京: 清华大学未来实验室实验, 2022.