专题:学科融合与设计创新

光催化纳米抗微生物自清洁复合材料研究进展

  • 何伟伟 ,
  • 赵云 ,
  • 乐恢榕
展开
  • 清华大学未来实验室,北京 100084
何伟伟,科研助理,研究方向为生物环保性能评价,电子信箱:heweiwei1012@mail.tsinghua.edu.cn

收稿日期: 2021-03-29

  修回日期: 2022-07-08

  网络出版日期: 2023-05-22

基金资助

科学技术部国家外国专家项目(G2021102010L)

Research progress of photocatalytic antimicrobial and self-cleaning nanocomposite materials

  • HE Weiwei ,
  • ZHAO Yun ,
  • LE Huirong
Expand
  • The Future Laboratory, Tsinghua University, Beijing 100084, China

Received date: 2021-03-29

  Revised date: 2022-07-08

  Online published: 2023-05-22

摘要

表面光催化材料广泛用于表面自清洁、污水处理、水制氢等领域。特别是复合半导体纳米材料,利用p-n结原理可以大幅度提高表面自由电子和电子空穴浓度,从而提高吸收太阳光的能力,具有广阔的应用前景。阐述了纳米光催化材料领域的研究进展,以及在食品包装、医疗器械、交通设备及建筑材料领域抗菌自清洁的应用前景。

本文引用格式

何伟伟 , 赵云 , 乐恢榕 . 光催化纳米抗微生物自清洁复合材料研究进展[J]. 科技导报, 2023 , 41(8) : 113 -119 . DOI: 10.3981/j.issn.1000-7857.2023.08.011

Abstract

Surface photocatalytic technology is widely used in surface self-cleaning, sewage treatment, water to hydrogen conversion and other fields. In particular, composite semiconductor materials, using the p-n junction principle, greatly improve the concentration of surface electrons and holes, thereby improving the ability to absorb sunlight, leading to broad application prospects. This paper focuses on the progress of nano-photocatalytic technology in the field of sewage treatment, water-hydrogen conversion and surface modification of medical devices, as well as the application prospects in antimicrobial self-cleaning for food packaging, transportation equipment and building materials. This is important to reduce the current cross-infection of contact in public places and to control the global epidemic.

参考文献

[1] Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. The New England Journal of Medicine, 2020, 382(16): 1564-1567.
[2] Hu H, Wang J, Deng C, et al. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities[J]. Journal of Materials Science, 2018, 53(20): 14250-14261.
[3] Hu H, Xu J, Deng C, et al. 3D multilayered Bi4O5Br2 nanoshells displaying excellent visible light photocatalytic degradation behaviour for resorcinol[J]. Micro & Nano Letters, 2018, 13(8): 1121-1125.
[4] Hu H, Wang M, Deng C, et al. Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties[J]. Materials Letters, 2018, 224: 75-77.
[5] Hu H, Deng C, Sun M, et al. Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red[J]. Journal of Porous Materials, 2019, 26(6): 1743-1753.
[6] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299.
[7] Tsai M L, Su S H, Chang J. K, et al. Monolayer MoS2 Heterojunction Solar Cells[J]. ACS Nano, 2014, 8(8): 8317-8322.
[8] Morales-Guio C G, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681.
[9] Xie Y L, Li Z X, Xu Z G, et al. Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications[J]. Electrochemistry Communications, 2011, 13(8): 788-791.
[10] Cai H, You Q, Hu Z, et al. Fabrication and correlation between photoluminescence and photoelectrochemical properties of vertically aligned ZnO coated TiO2 nanotube arrays[J]. Solar Energy Materials and Solar Cells, 2014, 123: 233-238.
[11] Miles D O, Lee C S, Cameron P J, et al. Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells[J]. Journal of Power Sources, 2016, 325: 365-374.
[12] Ma Q, Ma S, Huang Y M. Enhanced photovoltaic performance of dye sensitized solar cell with ZnO nanohoneycombs decorated TiO2 photoanode[J]. Materials Letters, 2018, 218: 237-240.
[13] 何伟伟, 宗宇恒, 乐恢榕. GO -Ag-CH溶液涂层板抗病毒实验研究[R]. 北京: 中科世生(北京)医药科技有限公司检测报告, 2021-08-13.
[14] Besinis A, Hadi S D, Le H R, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings[J]. Nanotoxicology, 2017, 11(3): 327-338.
[15] Danookdharree U, Le H R, Tredwin C. The effect of initial etching sites on the morphology of anodised TiO2 nanotubes on Ti-6Al-4V alloy[J]. Journal of the Electrochemical Society, 2015,162(10): 213-222.
[16] Gunputh U F, Le H R, Handy R D, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Materials Science and Engineering C-Materials for Biological Applications, 2018, 91: 638-644.
[17] Gunputh U F, Le H R, Besinis A, et al. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus[J]. International Journal of Nanomedicine, 2019, 14: 3583.
[18] Gunputh U F, Le H R, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus[J]. Nanotoxicology, 2020, 14(1): 97-110.
[19] Salaie R N, Besinis A, Le H R, et al. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells[J]. Materials Science and Engineering C-Materials for Biological Applications, 2020, 107: 110210.
[20] 刘跃顺, 谢巧峰, 张武陵 . 抗菌薄膜及其制造方法:CN1515605[P]. 2004-07-28.
[21] 李建雄, 赖维新, 王文伟 . 抗菌薄膜及其双向拉伸工艺: CN1445264[P]. 2003-10-01.
[22] 徐晓玲, 范希梅, 陈丹 等. 纳米杂化T-ZnOw抗菌与环境 净 化 材 料 及 其 应 用 研 究 [EB/OL]. (2015-05-16)[2021-08-28]. http://www.kjj.com.cn/index.php?m=content&c=index&a=show&catid=347&id=1993.
[23] Zhao Q, Liu C, Su X, et al. Antibacterial characteristics of electroless plating Ni-P-TiO2 coatings[J]. Applied Surface Science, 2013, 274: 101-104.
[24] Kato Y F H. Aluminum or aluminum alloy material having excellent antimicrobial property and its production: JPH10280191A[P]. 1998-10-20.
[25] Champagne V K, Helfritch D J. A demonstration of the antimicrobial effectiveness of various copper surfaces[J].Journal of Biological Engineering, 2013, 7(1): 1-7.
[26] Arconada N, Durán A, Suárez S, et al. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel[J]. Applied Catalysis B: Environmental, 2009, 86(1-2): 1-7.
[27] 刘文芳, 邢易, 赵之平. 一种具有抗菌功能的防水透气材料及其制备方法: CN102786709A[P]. 2012-11-21.
[28] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性 中的应用[J], 化学进展, 2015, 27(2/3): 212-219.
[29] Kawashita M. Development and evaluation of the properties of functional ceramic microspheres for biomedical applications[J]. Journal of the Ceramic Society of Japan, 2018, 126(1): 1-7.
[30] Sciancalepore C, Bondioli F. Durability of SiO2-TiO2 photocatalytic coatings on ceramic tiles[J]. International Journal of Applied Ceramic Technology, 2015, 12(3): 679-684.
[31] Sciancalepore C, Manfredini T, Bondioli F. Antibacterial and self-cleaning coatings for silicate ceramics: A review[C]//Advances in Science and Technology. Zurich, Suritzerland: Trans Tech Publications Ltd, 2014, 92: 90-99.
[32] Fadeeva I V, Lazoryak B I, Davidova G A, et al. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications[J]. Materials Science and Engineering C-Materials for Biological Applications, 2021, 129: 112410.
[33] Bedair T M, Heo Y, Ryu J, et al. Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications[J]. Biomaterials Science, 2021, 9: 1903-1923.
[34] Tang Q G, Wang L J, Li J Y, et al. Mechanism and Performance Analysis of Easy-cleaning Ceramics[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2011, 178: 180-184.
[35] 柯善军, 田维, 蒙臻明, 等 . 一种抗菌陶瓷砖及其制备方法: CN110698227A[P]. 2020-01-17.
[36] Wang Q P, Guo X X, Wu W H, et al. Preparation of fine Ag2WO4 antibacterial powders and its application in the sanitary ceramics[C]//Advanced Materials Research.  Zurich,Suritzerland: Trans Tech Publications Ltd, 2011, 284: 1321-1325.
[37] Uzgur E, Bayrakci F, Koparal S, et al. Applications of calcium phosphate based antibacterial ceramics on sanitary and tile wares[C]//Key Engineering Materials. Zurich, Suritzerland: Trans Tech Publications Ltd, 2004, 264: 1573-1576.
[38] 刘子传, 郑经堂, 赵东风, 等 . 金属离子掺杂改性纳米TiO2 的能带结构及其光催化性能[J]. 硅酸盐学报, 2013, 41(3): 402-403.
[39] 贺鹏, 戴武斌, 饶培文, 等 . TiO2光催化型抗菌陶瓷的制备及其性能研究[J]. 中国陶瓷, 2016, 52(4): 24-28.
[40] Liang W J, Li J, Jin Y Q. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV[J]. Building Environment, 2012, 51: 345-350.
[41] Kayani Z N, Rahim S, Sagheer R, et al. Assessment of antibacterial and optical features of sol-gel dip coated La doped TiO2 thin films[J]. Materials Chemistry and Physics, 2020, 250: 123217.
[42] 何伟伟, 赵云, 乐恢榕 . 光催化 CuO-NiO 核-壳结构复合抗菌剂制备及其在抗菌陶瓷上的应用研究[R]. 北京: 清华大学未来实验室实验, 2022.
文章导航

/