[1] Zhang D, Machala M L, Chen D, et al. Hydroxylation and cation segregation in (La0.5Sr0.5)FeO3−δ electrodes[J]. Chemistry of Materials, 2020, 32(7): 2926-2934.
[2] Chen D, Guan Z, Zhang D, et al. Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2-x[J]. Nature Catalysis, 2020, 3(2): 116-124.
[3] Zhang C, Yu Y, Grass M E, et al. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells[J]. Journal of the American Chemical Society, 2013, 135(31): 11572-11579.
[4] Irvine J T S, Neagu D, Verbraeken M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016, 1(1): 15014.
[5] Tanner C W, Fung K, Virkar A V. The effect of porous composite electrode structure on solid oxide fuel cell performance: I. theoretical analysis[J]. Journal of the Electrochemical Society, 1997, 144(1): 21-30.
[6] Bieberle A, Meier L P, Gauckler L J. The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes[J]. Journal of the Electrochemical Society, 2001, 148(6): A646-A656.
[7] Baumann F S, Fleig J, Habermeier H U, et al. Impedance spectroscopic study on well-defined (La, Sr) (Co, Fe)O3-δ model electrodes[J]. Solid State Ionics, 2006, 177(11-12): 1071-1081.
[8] Feng Z A, Machala M L, Chueh W C. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2-x: Coupling between Ce3+ and carbonate adsorbates.[J]. Physical Chemistry Chemical Physics, 2015, 17 (18): 12273-12281.
[9] Chueh W C, McDaniel A H, Grass M E, et al. Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando[J]. Chemistry of Materials, 2012, 24(10): 1876-1882.
[10] Chen D, Bishop S R S, Tuller H L. Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics[J]. Journal of Electroceramics, 2012, 28(1): 62-69.
[11] Mueller D N, Machala M L, Bluhm H, et al. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J].Nature Communications, 2015, 6: 6097.
[12] Shi Y, Lee S C, Monti M, et al. Growth of highly strained CeO2 ultrathin films[J]. ACS Nano, 2016, 10: 9938-9947.
[13] Chueh W C, Hao Y, Jung W et al. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes[J]. Nature Materials, 2012, 11(2): 155-161.
[14] Zhu Y, He Z, Choi Y M, et al. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides[J]. Nature Communications, 2020, 11(1): 4299.
[15] Shi Y. Oxide surface and bulk atomic structures studied by real space and reciprocal space probes[D]. Stanford: Stanford University, 2015.
[16] Guan Z. Probing and tuning far-from-equilibrium oxygen exchange kinetics on electrochemical solid-gas interfaces[D]. Stanford: Stanford University, 2018.
[17] Mckee C. Surface science: The first thirty years[J]. Applied Catalysis A: General, North-Holland, 1994, 111(1): vii-viii.
[18] Jiang P, Bao X, Salmeron M. Catalytic reaction processes revealed by scanning probe microcopy[J]. Accounts of Chemical Research, 2015, 48(5): 1524-1531.
[19] Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process[J]. Nature Catalysis, 2019, 2(5): 377-380.
[20] Wiederoder M S, Nallon E C, Weiss M, et al. Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants[J]. ACS Sensors, 2017, 2(11): 1669-1678.
[21] Schlögl R. Catalytic synthesis of ammonia-A never-ending story?[J]. Angewandte Chemie International Edition, 2003, 42(18): 2004-2008.
[22] Zhang Y. Thermoelectric advances to capture waste heat in automobiles[J]. ACS Energy Letters, 2018, 3(7): 1523-1524.
[23] Kim H, Rao S R, Kapustin E A et al. Adsorption-based atmospheric water harvesting device for arid climates[J].Nature Communications, 2018, 9(1): 1191.
[24] Qiu L, He S, Jiang Y, et al. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8cm2 approaching 10% efficiency[J]. Journal of Materials Chemistry A, 2019, 7(12): 6920-6929.
[25] Lemmon J P. Energy: Reimagine fuel cells[J]. Nature, 2015, 525(7570): 447-449.
[26] Bañares M A, Wachs I E. Molecular structures of supported metal oxide catalysts under different environments[J]. Journal of Raman Spectroscopy, 2002, 33(5): 359-380.
[27] Bañares M A, Guerrero-Pérez M O, Fierro J L G, et al.Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): A method for understanding the active centres of cations supported on porous materials[J]. Journal of Materials Chemistry, 2002, 12(11): 3337-3342.
[28] Weckhuysen B M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the
field of heterogeneous catalysis[J]. Chemical Communications, 2002, 2: 97-110.
[29] Wu C H, Eren B, Salmeron M B. Structure and dynamics of reactant coadsorption on single crystal model catalysts by HP-STM and AP-XPS: A mini review[J]. Topics in Catalysis, 2016, 59(5-7): 405-419.
[30] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 2017, 117(7): 5110-5145.
[31] Liu M, Lynch M E, Blinn K, et al. Rational SOFC material design: New advances and tools[J]. Materials Today, 2011, 14(11): 534-546.
[32] Janbroers S, Crozier P A, Zandbergen H W, et al. A model study on the carburization process of iron-based Fischer-Tropsch catalysts using in situ TEM-EELS[J]. Applied Catalysis B: Environmental, 2011, 102(3-4): 521-527.
[33] Starr D E, Liu Z, Hävecker M, et al. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy[J]. Chemical Society Reviews, 2013, 42(13): 5833-5857.
[34] Taheri M L, Stach E A, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy[J]. Ultramicroscopy, 2016, 170: 86-95.
[35] Zhang Y, Pluchery O, Caillard L, et al. Sensing the charge state of single gold nanoparticles via work function measurements[J]. Nano Letters, 2015, 15(1): 51-55.
[36] Yin N N, Buyanin A, Riechers S L, et al. In situ and real-time atomic force microscopy studies of the stability of oligothiophene langmuir-blodgett monolayers in liquid[J]. Journal of Physical Chemistry C, 2014, 118(11): 5789-5795.
[37] Trotochaud L, Head A R, Karslıoğlu O, et al. Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers[J]. Journal of Physics: Condensed Matter, 2017, 29(5): 053002.
[38] Crumlin E J, Liu Z, Bluhm H, et al. X-ray spectroscopy of energy materials under in situ/operando conditions[J]. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200: 264-273.
[39] Whaley J A, McDaniel A H, El Gabaly F, et al. Note: fixture for characterizing electrochemical devices in-operando in traditional vacuum systems[J]. Review of Scientific Instruments, 2010, 81(8): 086104.
[40] Chakrabarti A, Ford M E, Gregory D, et al. A decade+ of operando spectroscopy studies[J]. Catalysis Today, 2017, 283: 27-53.
[41] Zhang Y, Fu D, Xu X et al. Application of operando spectroscopy on catalytic reactions[J]. Current Opinion in Chemical Engineering, 2016, 12: 1-7.
[42] Urakawa A, Bürgi T, Baiker A. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: Principle and application in heterogeneous catalysis[J]. Chemical Engineering Science, 2008, 63(20): 4902-4909.
[43] Gonzalez-Jimenez I D, Cats K, Davidian T, et al. Hard X-ray nanotomography of catalytic solids at work[J]. Angewandte Chemie International Edition, 2012, 51(48): 11986-11990.
[44] Newton M A, van Beek W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: A view from a bridge[J]. Chemical Society Reviews, 2010, 39(12): 4845-4863.
[45] Bentrup U. Combining in situ characterization methods in one set-up: Looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts[J]. Chemical Society Reviews, 2010, 39(12): 4718-4730.
[46] Nguyen L, Tao F F, Tang Y, et al. Understanding cata⁃lyst surfaces during catalysis through near ambient pressure X-ray photoelectron spectroscopy[J]. Chemical Reviews, 2019, 119(12): 6822-6905.
[47] Karsl O, Bluhm H. Ambient-pressure X-ray photoelectron spectroscopy (APXPS) [M]//Operando Research in Heterogeneous Catalysis. Springer, Cham, 2017: 31-57.
[48] Salmeron M. From surfaces to interfaces: Ambient pressure XPS and beyond[J]. Topics in Catalysis, 2018, 61 (20): 2044-2051.
[49] Kolmakov A, Dikin D A, Cote L J, et al. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy[J]. Nature Nanotechnology, 2011, 6(10): 651-657.
[50] Velasco-Vélez J J, Pfeifer V, Hävecker M et al. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap[J]. Review of Scientific Instruments, 2016, 87(5): 053121.
[51] Schwanke C, Xi L, Lange K M. A soft XAS transmission cell for operando studies[J]. Journal of Synchrotron Radiation, 2016, 23(6): 1390-1394.
[52] Schwanke C, Golnak R, Xiao J, et al. Electrochemical flowcell for in-situ investigations by soft X-ray absorption and emission spectroscopy[J]. Review of Scientific Instruments, 2014, 85(10): 103120.
[53] Boldrin P, Ruiz-Trejo E, Mermelstein J et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J]. Chemical Reviews, 2016, 116(22): 13633-13684.
[54] Escudero C, Jiang P, Pach E, et al. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions[J]. Journal of Synchrotron Radiation, International Union of Crystallography, 2013, 20(3): 504-508.
[55] Cai J, Dong Q, Han Y, et al. An APXPS endstation for gas-solid and liquid-solid interface studies at SSRF[J]. Nuclear Science and Techniques, 2019, 30(5): 81.
[56] Chen D, Bishop S R, Tuller H L. Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics[J]. Journal of Electroceramics, 2012, 28: 62-69.
[57] Feng Z A, El Gabaly F, Ye X et al. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface[J]. Nature Communications, 2014, 5: 4374.
[58] Nenning A, Opitz A K, Rameshan C et al. Ambient pressure XPS study of mixed conducting perovskite-type SOFC cathode and anode materials under well-defined electrochemical polarization[J]. Journal of Physical Chemistry C, 2016, 120(3): 1461-1471.
[59] Chen D, Bishop S R, Tuller H L. Non-stoichiometry in oxide thin films: A chemical capacitance study of the praseodymium-cerium oxide system[J]. Advanced Functional Materials, 2013, 23(17): 2168-2174.
[60] Feng Z A, Balaji Gopal C, Ye X, et al. Origin of overpotential-dependent surface dipole at CeO2-x/gas interface during electrochemical oxygen insertion reactions[J]. Chemistry of Materials, 2016, 28: 6233-6242.
[61] Hauser M, Wojcik M, Kim D, et al. Correlative super-resolution microscopy: New dimensions and new opportunities[J]. Chemical Reviews, 2017, 117(11): 7428-7456.
[62] Barth C, Foster A S, Henry C R, et al. Recent trends in surface characterization and chemistry with high-resolution scanning force methods[J]. Advanced Materials, 2011, 23(4): 477-501.
[63] Skafte T L, Guan Z, Machala M L, et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates[J]. Nature Energy, 2019, 4(10): 846-855.
[64] Lv B, Qian T, Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials [J]. Nature Reviews Physics, 2019, 1(10): 609-626.
[65] Baeumer C, Li J, Lu Q, et al. Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis[J]. Nature Materials, 2021, 5(20): 674-682.
[66] Borgwardt M, Wilke M, Kampen T, et al. Charge transfer dynamics at dye-sensitized ZnO and TiO2 interfaces studied by ultrafast XUV photoelectron spectroscopy[J].Scientific Reports, 2016, 6(1): 24422.
[67] Loh Z H, Leone S R. Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013, 4(2): 292-302.
[68] Severson K A, Attia P M, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
[69] George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534.
[70] Réda C, Kaufmann E, Delahaye-Duriez A. Machine learning applications in drug development[J]. Computational and Structural Biotechnology Journal, 2020, 18: 241-252.
[71] Gu G H, Choi C, Lee Y, et al. Progress in computational and machine-learning methods for heterogeneous small-molecule activation[J]. Advanced Materials, 2020, 1907865: 1-29.
[72] Northrup P, Leri A, Tappero R. Applications of“tender” energy (1-5 keV) X-ray absorption spectroscopy in life sciences[J]. Protein & Peptide Letters, 2016, 23(3): 300-308.
[73] Shi W. Stability analysis of solid oxide fuel cell multi-scale system[D]. Beijing: Tsinghua University, 2020.
[74] Timoshenko J, Lu D, Lin Y, et al. Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles[J]. The Journal of Physical Chemistry Letters, 2017, 8(20): 5091-5098.