专题:学科融合与设计创新

高温气/固电化学界面调控研究进展

  • 苏虹阳 ,
  • 陈迪
展开
  • 1. 清华大学未来实验室,北京 100084
    2. 清华大学美术学院,北京 100084
苏虹阳,博士后,研究方向为高温气/固界面上的电化学反应,电子信箱:hysu2021@mail.tsinghua.edu.cn

收稿日期: 2022-03-09

  修回日期: 2022-11-18

  网络出版日期: 2023-05-22

基金资助

国家重点研发计划项目(2021YFA0718900);国家自然科学基金项目(NSFC52102137);新型陶瓷与精细工艺国家重点实验室开放课题(KF202101)

Research advances in the high temperature gas/solid electrochemical interface regulation

  • SU Hongyang ,
  • CHEN Di
Expand
  • 1. The Future Laboratory, Tsinghua University, Beijing 100084, China
    2. Academy of Arts & Design, Tsinghua University, Beijing 100084, China

Received date: 2022-03-09

  Revised date: 2022-11-18

  Online published: 2023-05-22

摘要

在高温固体氧化物燃料电池等器件中,气/固界面对电极反应性能及器件寿命有显著影响。因此,高温气/固电化学界面的精准调控和原位表征是新能源器件中材料研究与开发的一个核心方向。回顾了应用于高温电化学基础研究与器件领域中的高温气/固界面的制备调控的发展历程,总结了发展高温气/固界面原位动态表征的必要性及近年来原位表征的发展现状,指出了更精细的高温气/固界面研发的挑战。结合当前多学科发展方向,建议在未来的研究中提升界面调控的精确度至原子尺度,研发更多适用于高温气/固界面的原位表征方法,并结合运用机器学习等新的数据科学研究方法等。

本文引用格式

苏虹阳 , 陈迪 . 高温气/固电化学界面调控研究进展[J]. 科技导报, 2023 , 41(8) : 120 -131 . DOI: 10.3981/j.issn.1000-7857.2023.08.012

Abstract

In devices such as high-temperature solid oxide fuel cells, the gas/solid interface has significant impact on electrode reaction performance and device life. Therefore, the precise regulation and in situ characterization of the high-temperature gas/solid electrochemical interface is a core direction of material research and development in new energy devices. This paper reviews the development process of the preparation and regulation of high-temperature gas/solid interfaces applied to the basic research of high-temperature electrochemistry and device fields, and summarizes the necessity of developing in situ dynamic characterization of high-temperature gas/solid interface and the development status of in situ characterizations in recent years, and points out the challenges of more refined high-temperature gas/solid interface. Combined with the current multidisciplinary development direction, this paper proposes to improve the accuracy of interface control to the atomic scale in future research, develop more in situ characterization methods which are suitable for high-temperature gas/solid interfaces, and combine the use of new data science research methods such as machine learning in the future.

参考文献

[1] Zhang D, Machala M L, Chen D, et al. Hydroxylation and cation segregation in (La0.5Sr0.5)FeO3−δ electrodes[J]. Chemistry of Materials, 2020, 32(7): 2926-2934.
[2] Chen D, Guan Z, Zhang D, et al. Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2-x[J]. Nature Catalysis, 2020, 3(2): 116-124.
[3] Zhang C, Yu Y, Grass M E, et al. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells[J]. Journal of the American Chemical Society, 2013, 135(31): 11572-11579.
[4] Irvine J T S, Neagu D, Verbraeken M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016, 1(1): 15014.
[5] Tanner C W, Fung K, Virkar A V. The effect of porous composite electrode structure on solid oxide fuel cell performance: I. theoretical analysis[J]. Journal of the Electrochemical Society, 1997, 144(1): 21-30.
[6] Bieberle A, Meier L P, Gauckler L J. The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes[J]. Journal of the Electrochemical Society, 2001, 148(6): A646-A656.
[7] Baumann F S, Fleig J, Habermeier H U, et al. Impedance spectroscopic study on well-defined (La, Sr) (Co, Fe)O3-δ model electrodes[J]. Solid State Ionics, 2006, 177(11-12): 1071-1081.
[8] Feng Z A, Machala M L, Chueh W C. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2-x: Coupling between Ce3+ and carbonate adsorbates.[J]. Physical Chemistry Chemical Physics, 2015, 17 (18): 12273-12281.
[9] Chueh W C, McDaniel A H, Grass M E, et al. Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando[J]. Chemistry of Materials, 2012, 24(10): 1876-1882.
[10] Chen D, Bishop S R S, Tuller H L. Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics[J]. Journal of Electroceramics, 2012, 28(1): 62-69.
[11] Mueller D N, Machala M L, Bluhm H, et al. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J].Nature Communications, 2015, 6: 6097.
[12] Shi Y, Lee S C, Monti M, et al. Growth of highly strained CeO2 ultrathin films[J]. ACS Nano, 2016, 10: 9938-9947.
[13] Chueh W C, Hao Y, Jung W et al. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes[J]. Nature Materials, 2012, 11(2): 155-161.
[14] Zhu Y, He Z, Choi Y M, et al. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides[J]. Nature Communications, 2020, 11(1): 4299.
[15] Shi Y. Oxide surface and bulk atomic structures studied by real space and reciprocal space probes[D]. Stanford: Stanford University, 2015.
[16] Guan Z. Probing and tuning far-from-equilibrium oxygen exchange kinetics on electrochemical solid-gas interfaces[D]. Stanford: Stanford University, 2018.
[17] Mckee C. Surface science: The first thirty years[J]. Applied Catalysis A: General, North-Holland, 1994, 111(1): vii-viii.
[18] Jiang P, Bao X, Salmeron M. Catalytic reaction processes revealed by scanning probe microcopy[J]. Accounts of Chemical Research, 2015, 48(5): 1524-1531.
[19] Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process[J]. Nature Catalysis, 2019, 2(5): 377-380.
[20] Wiederoder M S, Nallon E C, Weiss M, et al. Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants[J]. ACS Sensors, 2017, 2(11): 1669-1678.
[21] Schlögl R. Catalytic synthesis of ammonia-A never-ending story?[J]. Angewandte Chemie International Edition, 2003, 42(18): 2004-2008.
[22] Zhang Y. Thermoelectric advances to capture waste heat in automobiles[J]. ACS Energy Letters, 2018, 3(7): 1523-1524.
[23] Kim H, Rao S R, Kapustin E A et al. Adsorption-based atmospheric water harvesting device for arid climates[J].Nature Communications, 2018, 9(1): 1191.
[24] Qiu L, He S, Jiang Y, et al. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8cm2 approaching 10% efficiency[J]. Journal of Materials Chemistry A, 2019, 7(12): 6920-6929.
[25] Lemmon J P. Energy: Reimagine fuel cells[J]. Nature, 2015, 525(7570): 447-449.
[26] Bañares M A, Wachs I E. Molecular structures of supported metal oxide catalysts under different environments[J]. Journal of Raman Spectroscopy, 2002, 33(5): 359-380.
[27] Bañares M A, Guerrero-Pérez M O, Fierro J L G, et al.Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): A method for understanding the active centres of cations supported on porous materials[J]. Journal of Materials Chemistry, 2002, 12(11): 3337-3342.
[28] Weckhuysen B M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the
field of heterogeneous catalysis[J]. Chemical Communications, 2002, 2: 97-110.
[29] Wu C H, Eren B, Salmeron M B. Structure and dynamics of reactant coadsorption on single crystal model catalysts by HP-STM and AP-XPS: A mini review[J]. Topics in Catalysis, 2016, 59(5-7): 405-419.
[30] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 2017, 117(7): 5110-5145.
[31] Liu M, Lynch M E, Blinn K, et al. Rational SOFC material design: New advances and tools[J]. Materials Today, 2011, 14(11): 534-546.
[32] Janbroers S, Crozier P A, Zandbergen H W, et al. A model study on the carburization process of iron-based Fischer-Tropsch catalysts using in situ TEM-EELS[J]. Applied Catalysis B: Environmental, 2011, 102(3-4): 521-527.
[33] Starr D E, Liu Z, Hävecker M, et al. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy[J]. Chemical Society Reviews, 2013, 42(13): 5833-5857.
[34] Taheri M L, Stach E A, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy[J]. Ultramicroscopy, 2016, 170: 86-95.
[35] Zhang Y, Pluchery O, Caillard L, et al. Sensing the charge state of single gold nanoparticles via work function measurements[J]. Nano Letters, 2015, 15(1): 51-55.
[36] Yin N N, Buyanin A, Riechers S L, et al. In situ and real-time atomic force microscopy studies of the stability of oligothiophene langmuir-blodgett monolayers in liquid[J]. Journal of Physical Chemistry C, 2014, 118(11): 5789-5795.
[37] Trotochaud L, Head A R, Karslıoğlu O, et al. Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers[J]. Journal of Physics: Condensed Matter, 2017, 29(5): 053002.
[38] Crumlin E J, Liu Z, Bluhm H, et al. X-ray spectroscopy of energy materials under in situ/operando conditions[J]. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200: 264-273.
[39] Whaley J A, McDaniel A H, El Gabaly F, et al. Note: fixture for characterizing electrochemical devices in-operando in traditional vacuum systems[J]. Review of Scientific Instruments, 2010, 81(8): 086104.
[40] Chakrabarti A, Ford M E, Gregory D, et al. A decade+ of operando spectroscopy studies[J]. Catalysis Today, 2017, 283: 27-53.
[41] Zhang Y, Fu D, Xu X et al. Application of operando spectroscopy on catalytic reactions[J]. Current Opinion in Chemical Engineering, 2016, 12: 1-7.
[42] Urakawa A, Bürgi T, Baiker A. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: Principle and application in heterogeneous catalysis[J]. Chemical Engineering Science, 2008, 63(20): 4902-4909.
[43] Gonzalez-Jimenez I D, Cats K, Davidian T, et al. Hard X-ray nanotomography of catalytic solids at work[J]. Angewandte Chemie International Edition, 2012, 51(48): 11986-11990.
[44] Newton M A, van Beek W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: A view from a bridge[J]. Chemical Society Reviews, 2010, 39(12): 4845-4863.
[45] Bentrup U. Combining in situ characterization methods in one set-up: Looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts[J]. Chemical Society Reviews, 2010, 39(12): 4718-4730.
[46] Nguyen L, Tao F F, Tang Y, et al. Understanding cata⁃lyst surfaces during catalysis through near ambient pressure X-ray photoelectron spectroscopy[J]. Chemical Reviews, 2019, 119(12): 6822-6905.
[47] Karsl O, Bluhm H. Ambient-pressure X-ray photoelectron spectroscopy (APXPS) [M]//Operando Research in Heterogeneous Catalysis. Springer, Cham, 2017: 31-57.
[48] Salmeron M. From surfaces to interfaces: Ambient pressure XPS and beyond[J]. Topics in Catalysis, 2018, 61 (20): 2044-2051.
[49] Kolmakov A, Dikin D A, Cote L J, et al. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy[J]. Nature Nanotechnology, 2011, 6(10): 651-657.
[50] Velasco-Vélez J J, Pfeifer V, Hävecker M et al. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap[J]. Review of Scientific Instruments, 2016, 87(5): 053121.
[51] Schwanke C, Xi L, Lange K M. A soft XAS transmission cell for operando studies[J]. Journal of Synchrotron Radiation, 2016, 23(6): 1390-1394.
[52] Schwanke C, Golnak R, Xiao J, et al. Electrochemical flowcell for in-situ investigations by soft X-ray absorption and emission spectroscopy[J]. Review of Scientific Instruments, 2014, 85(10): 103120.
[53] Boldrin P, Ruiz-Trejo E, Mermelstein J et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J]. Chemical Reviews, 2016, 116(22): 13633-13684.
[54] Escudero C, Jiang P, Pach E, et al. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions[J]. Journal of Synchrotron Radiation, International Union of Crystallography, 2013, 20(3): 504-508.
[55] Cai J, Dong Q, Han Y, et al. An APXPS endstation for gas-solid and liquid-solid interface studies at SSRF[J]. Nuclear Science and Techniques, 2019, 30(5): 81.
[56] Chen D, Bishop S R, Tuller H L. Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics[J]. Journal of Electroceramics, 2012, 28: 62-69.
[57] Feng Z A, El Gabaly F, Ye X et al. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface[J]. Nature Communications, 2014, 5: 4374.
[58] Nenning A, Opitz A K, Rameshan C et al. Ambient pressure XPS study of mixed conducting perovskite-type SOFC cathode and anode materials under well-defined electrochemical polarization[J]. Journal of Physical Chemistry C, 2016, 120(3): 1461-1471.
[59] Chen D, Bishop S R, Tuller H L. Non-stoichiometry in oxide thin films: A chemical capacitance study of the praseodymium-cerium oxide system[J]. Advanced Functional Materials, 2013, 23(17): 2168-2174.
[60] Feng Z A, Balaji Gopal C, Ye X, et al. Origin of overpotential-dependent surface dipole at CeO2-x/gas interface during electrochemical oxygen insertion reactions[J]. Chemistry of Materials, 2016, 28: 6233-6242.
[61] Hauser M, Wojcik M, Kim D, et al. Correlative super-resolution microscopy: New dimensions and new opportunities[J]. Chemical Reviews, 2017, 117(11): 7428-7456.
[62] Barth C, Foster A S, Henry C R, et al. Recent trends in surface characterization and chemistry with high-resolution scanning force methods[J]. Advanced Materials, 2011, 23(4): 477-501.
[63] Skafte T L, Guan Z, Machala M L, et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates[J]. Nature Energy, 2019, 4(10): 846-855.
[64] Lv B, Qian T, Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials [J]. Nature Reviews Physics, 2019, 1(10): 609-626.
[65] Baeumer C, Li J, Lu Q, et al. Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis[J]. Nature Materials, 2021, 5(20): 674-682.
[66] Borgwardt M, Wilke M, Kampen T, et al. Charge transfer dynamics at dye-sensitized ZnO and TiO2 interfaces studied by ultrafast XUV photoelectron spectroscopy[J].Scientific Reports, 2016, 6(1): 24422.
[67] Loh Z H, Leone S R. Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013, 4(2): 292-302.
[68] Severson K A, Attia P M, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
[69] George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534.
[70] Réda C, Kaufmann E, Delahaye-Duriez A. Machine learning applications in drug development[J]. Computational and Structural Biotechnology Journal, 2020, 18: 241-252.
[71] Gu G H, Choi C, Lee Y, et al. Progress in computational and machine-learning methods for heterogeneous small-molecule activation[J]. Advanced Materials, 2020, 1907865: 1-29.
[72] Northrup P, Leri A, Tappero R. Applications of“tender” energy (1-5 keV) X-ray absorption spectroscopy in life sciences[J]. Protein & Peptide Letters, 2016, 23(3): 300-308.
[73] Shi W. Stability analysis of solid oxide fuel cell multi-scale system[D]. Beijing: Tsinghua University, 2020.
[74] Timoshenko J, Lu D, Lin Y, et al. Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles[J]. The Journal of Physical Chemistry Letters, 2017, 8(20): 5091-5098.
文章导航

/