专题:航空复合材料技术

核壳粒子增韧改性液态成型双马树脂性能及其机理

  • 邹齐,王乐天,李军,张代军,陈祥宝,刘燕峰
展开
  • 1. 中国航发北京航空材料研究院软材料技术研究中心,北京 100079
    2. 中国航发北京航空材料研究院先进复合材料国防科技重点实验室,北京 100095
邹齐,工程师,研究方向为结构树脂基复合材料,电子信箱:zouqi29@163.com

收稿日期: 2023-01-30

  修回日期: 2023-03-28

  网络出版日期: 2023-06-01

基金资助

国家重点研发计划项目(2018YFA0703300);国家科技重大专项(2017-IV-0007-0044)

Properties and mechanism of core-shell particle toughening liquid molding bismaleimide resin

  • ZOU Qi, WANG Letian, LI Jun ZHANG Daijun, CHEN Xiangbao, LIU Yanfeng
Expand
  • 1. Soft Materials Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100079, China
    2. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2023-01-30

  Revised date: 2023-03-28

  Online published: 2023-06-01

摘要

传统的液态成型双马来酰亚胺树脂(BMI)较低的韧性阻碍了其在航空航天领域的应用。通过在液态成型双马树脂网络中引入核壳粒子,利用核壳粒子具备独特的双层结构增韧改性双马树脂。采用扫描电子显微镜(SEM)对不同含量核壳粒子改性液态成型双马树脂体系断面形貌进行研究,SEM结果表明,改性的液态成型双马树脂固化物断裂表面的裂纹扩展明显受阻,显示韧性断裂形貌。研究了不同含量核壳粒子对液态成型双马树脂体系性能的影响,优选出最佳的核壳粒子含量。研究表明,改性固化物表现出优异的机械性能:拉伸强度108.8 MPa,提高了13.1%;断裂伸长率3.12%,提高了16.8%;弯曲强度190 MPa,提高了12.4%;KIC达到 2.83 MPa/m1/2,提高了 20.9%;GIc达到 1619 J/m2,提高了 54.6%;并且保持改性前树脂热性能及热失重性能,玻璃化转变温度Tg为292.3℃,5%热失重温度为401.0℃。

本文引用格式

邹齐,王乐天,李军,张代军,陈祥宝,刘燕峰 . 核壳粒子增韧改性液态成型双马树脂性能及其机理[J]. 科技导报, 2023 , 41(9) : 43 -50 . DOI: 10.3981/j.issn.1000-7857.2023.09.005

Abstract

The poor toughness of liquid molding bismaleimide resin (BMI) had hampered its application in the aeronautics and space field before core-shell particles with double-layer structure were introduced to toughen BMI. The fracture morphology of BMI was studied by scanning electron microscopy (SEM) showing that the fracture surfaces of the toughened BMI were ductile fracture morphology owing to crack propagation blocked. In addition, the content of core-shell particles was adjusted to perfectly improve the comprehensive performance of BMI. Compared to the neat BMI, toughened BMI exhibits excellent mechanical performance with a tensile strength of 108.8 MPa, increased by 13.1%, an elongation at break of 3.12%, increased by 16.8%, a flexural strength of 190 MPa, increased by 12.4%, a KIc of 2.83 MPa/m1/2, increased by 20.9%, and a GIc of 1619 J/m2, increased by 54.6%. Moreover, the toughened BMI can maintain heat resistance and thermal stability, with glass transition temperature of 292.3°C and 5% weight loss temperature of 401.0°C.

参考文献

[1] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 16.
[2] 陈祥宝 . 先进树脂基复合材料的发展[J]. 航空材料学报, 2000, 20(1): 9.
[3] 杜善义 . 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 12.
[4] Robertson F C. Resin transfer moulding of aerospace resins: A review[J]. Polymer International, 2010, 20(5): 417-429.
[5] 蒋诗才, 包建文, 张连旺, 等. 液体成型树脂基复合材料及其工艺研究进展[J]. 航空制造技术, 2021, 64(5): 13.
[6] Iredale R J, Ward C, Hamerton I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science, 2016, 69: 1-12.
[7] 梁国正. 双马来酰亚胺树脂[M]. 北京: 化学工业出版社, 1997.
[8] 李爽, 赵雄燕, 孙占英, 等. 双马来酰亚胺树脂的研究进展[J]. 塑料科技, 2014, 42(6): 122-126.
[9] Konarski M M. Development of a toughened bismaleimide resin matrix for use in advanced composites[J]. High Performance Polymers, 1989, 1(4): 299-310.
[10] 安群力, 齐暑华, 周文英, 等 . 国内双马来酰亚胺树脂改性研究进展[J]. 化学推进剂与高分子材料, 2007, 5(4): 13-16.
[11] 周宏福, 刘润山 . 双马来酰亚胺树脂的改性研究进展[J]. 合成技术及应用, 2009, 24(2): 35-40.
[12] 梁丹, 梁国正, 王九成. 双马来酰亚胺树脂增韧改性研究新进展[J]. 材料导报, 2007, 21(9): 77-79.
[13] 宫大军, 郁杰, 金双华, 等 . 双马来酰亚胺增韧改性的研究进展[J]. 绝缘材料, 2011, 44(1): 41-46.
[14] 张思, 张扬, 张宝艳. 双马来酰亚胺树脂增韧改性研究进展[J]. 科技导报, 2016, 34(8): 31-34.
[15] Li Z, Yang M, Rui H, et al. Bismaleimide resin modified with diallyl bisphenol A and diallyl p-phenyl diamine for resin transfer molding[J]. Journal of Applied Polymer Science, 2010, 80(12): 2245-2250.
[16] 王洪波, 周浩然, 徐双平. 二元胺/环氧树脂增韧双马树脂的研究[J]. 哈尔滨理工大学学报, 2005, 10(5): 88-90.
[17] 张金祥 . 新型双马/环氧树脂共固化体系的研究[D]. 大连: 大连理工大学, 2011.
[18] 王汝敏 . 双马/二元胺/环氧体系的组成对性能的影响[J]. 高分子材料科学与工程, 1997(3): 73-78.
[19] Yuan L, Ma X, Gu A, et al. A novel organic rectorite modified bismaleimide/diallylbisphenol A system[J]. Polymers for Advanced Technologies, 2010, 20(11): 826-833.
[20] 胡睿, 王汝敏, 强雪原, 等 . 新型烯丙基化合物改性双马来酰亚胺树脂的制备及研究[J]. 工程塑料应用, 2013(9): 10-14.
[21] 程雷, 王汝敏, 王小建, 等 . 烯丙基化合物改性双马来酰亚胺树脂的研究进展[J]. 中国胶粘剂, 2009, 18(4):58-63.
[22] 刘木金, 孙赛, 王海, 等 . 烯丙基化合物改性双马来酰亚胺[J]. 热固性树脂, 2011(2): 51-54.
[23] And J C P, Chong S P S. Cure characterization in bis(maleimide)/diallylbisphenol A resin by fluorescence, FT-IR, and UV-reflection spectroscopy[J]. Macromolecules, 1997, 30(22): 6845-6851.
[24] And J C P, Chong S P S. Fluorescence characteristics of cure products in bis(maleimide)/diallylbisphenol A resin[J]. Macromolecules, 1997, 30(22): 6837-6844.
[25] Takeda S, Kakiuchi H. Toughening bismaleimide resins by reactive liquid rubbers[J]. Journal of Applied Polymer Science, 2010, 35(5): 1351-1366.
[26] 雷勇, 荆晓东, 江璐霞. 橡胶增韧双马来酰亚胺树脂的研究[J]. 化工新型材料, 2001, 29(2): 26-28.
[27] 杨海冬, 曲春艳, 王德志, 等 . 乙烯基橡胶增韧双马来酰亚胺树脂的研究[J]. 化学与粘合, 2014, 36(1): 20-23.
[28] Wilkinson S P, Ward T C, Mcgrath J E. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials[J]. Polymer, 1993, 34(4): 870-884.
[29] Zhang B, Ping L I, Chen X. Studies of modified bismaleimide resins Part I The influence of resin composition on thermal and impact properties[J]. Journal of Materials Science, 1998, 33(23): 5683-5687.
[30] 张丽娟, 虞鑫海 . 热塑性树脂增韧改性双马来酰亚胺树脂的研究进展[J]. 绝缘材料, 2008, 41(5): 34-39.
文章导航

/