为探索碳纳米管膜用于树脂基复合材料电热固化成型的工艺适用范围和应用前景,以 CCF800H/EC120A 碳纤维增强环氧预浸料为研究对象,用柔性碳纳米管膜对其电热固化处理。为优化电热固化工艺,对比了真空电热固化和模压电热固化对复合材料内部质量、玻璃化转变温度、力学性能及微观形貌的影响,以考察真空度和外压在电热固化过程中的作用。研究结果表明,碳纳米管膜可实现快速、均匀的加热;与模压电热固化相比,碳纳米管膜真空电热固化工艺所得复材板的内部质量好,玻璃化转变温度高,力学性能更优异,表明在该预浸料的电热固化过程中,真空度比外压对复材板成型质量和性能控制的作用更显著;与传统烘箱固化方式相比,真空电热固化复材板的弯曲强度保持率为 90%,弯曲模量相当,层剪性能差距较小。
To explore the application universality and prospect of carbon nanotube film (CNTF) in curing of resin-matrix composites via resistance heating, CCF800H/EC120A carbon fiber reinforced resin matrix composites were treated by CNTF electric heating cure. To optimize the electrothermal curing process, effects of electricthermal cure processes assisted with vacuum and with press mould on internal quality, glass transition temperature, mechanical properties and microstructure of composites were compared, thus identifying the roles of vacuum degree and external pressure in the electrothermal curing process. The results show that the CNTF can achieve rapid and uniform heating. Compared with press-moulded composite laminates cured by CNTF, composite laminates cured by CNTF within vacuum sealed bag own better internal quality, higher Tg and higher mechanical property, indicating that during the cure process of such prepreg, vacuum degree plays a more significant role than the external pressure in controlling internal quality and performance of obtained laminates. Bending strength of laminates cured by CNTF within vacuum sealed bag maintains at 90% of that cured by traditional oven cure,bending moduli of both cure methods are similar and laminar shear properties also show minor differences.
[1] 邢丽英, 蒋诗才, 周正刚 . 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2): 1-9.
[2] 许皓, 欧秋仁, 张帅, 等. 低温固化非热压罐成型树脂及其复合材料性能[J]. 宇航材料工艺, 2021, 51(1): 50-54.
[3] 王宇光, 黎观生, 张庆茂, 等. 电子束固化技术及可电子束固化环氧树脂体系[J]. 绝缘材料, 2002, 6: 27-31.
[4] Hassana M R, Ganjehb B. Application of microwave heating in acrospace composite processing[J]. Applied Mechanics and Materials, 2014, 564: 310-314.
[5] Li Y G, Li N Y, Zhou J, et al. Microwave curing of multidirectional carbon fiber reinforced polymer composites[J].Composite Structures, 2019, 212: 83-93.
[6] Ramakrishnan B, Zhu L, Pitchumani R. Curing of composites using internal resistive heating[J]. Journal of Manufacturing Science and Engineering, 2022, 122: 124-131.
[7] Muller B, Palardy G, Teixeira De Freitas S, et al. Out-of-autoclave manufacturing of GLARE panels using resistance heating[J]. Journal of Composite Materials, 2017, 52(12): 1661-1675.
[8] Han Y, Zhang X H, Yu X P, et al. Bio-inspired aggregation control of carbon nanotubes for ultra strong composites[J]. Scientific Reports, 2015, 5: 11533.
[9] Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[10] 石晓飞, 姜沁源, 李润, 等 . 碳纳米管水平阵列的结构控制生长:进展与展望[J]. 2021, 72(1): 86-115.
[11] 徐小魁, 张远, 蒋瑾, 等 . 碳纳米管薄膜电加热固化复合材料研究[J]. 炭素技术, 2017, 36(6): 18-23.
[12] Nguyen N, Hao A, Park J G, et al.In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current[J]. Advanced Engineering Materials, 2016, 18(1): 1906-1912.
[13] 张宁, 严刚 . 碳纳米管薄膜电加热固化复合材料胶接修补金属结构研究[J]. 复合材料科学与工程, 2021, 5: 49-54.
[14] 李金良, 顾轶卓, 李敏, 等 . 复合材料柔性电热膜固化方法与温度分布[J]. 北京航空航天大学学报, 2015, 41(9): 1714-1721.
[15] 杨茂伟, 刘建, 刘振濮, 等 . 非热压罐成型低孔隙率复合材料技术研究进展[J]. 宇航材料工艺, 2016, 46(6):21-25.
[16] 赵军, 白萍 . 动态热机械分析法对环氧树脂固化程度的研究[J]. 中国胶粘剂, 2001(3): 33-34.
[17] 彭公秋, 杨进军, 曹正华, 等 . 碳纤维增强树脂基复合材料的界面[J]. 材料导报, 2011, 25(7): 1-4.