综述

随钻超声井眼成像技术进展

  • 张硕 ,
  • 高文凯 ,
  • 滕鑫淼 ,
  • 丁华华 ,
  • 刘珂
展开
  • 1. 中国石油勘探开发研究院,北京 100083
    2. 中国石油集团工程技术研究院有限公司,北京 102206
张硕,硕士研究生,研究方向为井下信息测量与控制技术,电子信箱:2498211703@qq.com

收稿日期: 2022-08-04

  修回日期: 2022-09-19

  网络出版日期: 2023-06-01

基金资助

中国石油天然气集团有限公司直属院所基础研究和战略储备技术研究基金项目(2020D-5008-13)

Status and prospects of ultrasonic borehole imaging technology while drilling

  • ZHANG Shuo ,
  • GAO Wenkai ,
  • TENG Xinmiao ,
  • DING Huahua ,
  • LIU Ke
Expand
  • 1. Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100083, China
    2. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China

Received date: 2022-08-04

  Revised date: 2022-09-19

  Online published: 2023-06-01

摘要

随钻超声井眼成像技术是当前随钻测控领域的前沿技术,可以在随钻工况下实时生成高分辨率的井眼图像,能够准确反映井眼形状,识别裂缝、孔隙、层理等特征,在监测井眼工程状况和质量方面发挥着重要作用。阐述了随钻超声井眼成像系统的成像原理及构成要素,综述了发展历程及现状,分析了国外最新研发的随钻超声井眼成像系统的技术特点,总结了随钻超声井眼成像技术未来发展趋势,探讨了随钻超声井眼成像领域在仪器设计及发展的方向。

本文引用格式

张硕 , 高文凯 , 滕鑫淼 , 丁华华 , 刘珂 . 随钻超声井眼成像技术进展[J]. 科技导报, 2023 , 41(9) : 75 -82 . DOI: 10.3981/j.issn.1000-7857.2023.09.009

Abstract

Ultrasonic borehole imaging while drilling is a cutting-edge technology in the field of measurement and control for drilling. It can generate high-resolution borehole images in real time under the working conditions of drilling. The borehole images can accurately reflect borehole shape, identify fractures, pores, bedding and other characteristics, and play an important role in monitoring borehole engineering condition and quality. To summarize ultrasonic borehole imaging while drilling, based on a large number of literature research, this paper expounds the imaging principle and system components, summarizes the development process and current situation, analyzes and studies the characteristics of the latest oversea research and development of ultrasonic borehole imaging while drilling tools, and summarizes the development trend, in order to provide reference for the development of ultrasonic borehole imaging in China.

参考文献

[1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454.
[2] 贾承造, 郑民, 张永峰 . 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
[3] 许明亮, 任大明, 黄焌淞, 等. 多功能超声成像测井仪在工程测井中的应用[J]. 天津科技, 2021, 48(2): 66-69.
[4] 秦绪英, 肖立志, 索佰峰 . 随钻测井技术最新进展及其应用[J]. 勘探地球物理进展, 2003(4): 313-322.
[5] 路保平, 倪卫宁 . 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148-155.
[6] 朱祖扬 . 随钻声波测井技术发展现状[J]. 石油管材与仪器, 2015, 1(6): 6-9, 15.
[7] 章俊燕 . 超声波技术在成像测井仪中的应用[J]. 舰船电子工程, 2005, 25(4): 92-95.
[8] 孙加华, 肖洪伟, 幺忠文, 等. 声电成像测井技术在储层裂缝识别中的应用[J]. 大庆石油地质与开发, 2006, 25(3): 100-102, 110.
[9] Ciuperca C L, Tommaso D D, Dawber M, et al. Determining wellbore stability parameters using a new LWD high resolution ultrasonic imaging tool[C]//SPE/IADC International Drilling Conference and Exhibition. Richardson: SPE, 2019: SPE-194074-MS.
[10] 李红欣, 李天林, 杜江. 成像测井技术的现状及其应用[J]. 石油和化工设备, 2013, 16(6): 40-41.
[11] Morys M, Knizhnik S, Duncan A R, et al. Advances in borehole imaging in unconventional reservoirs[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston: URTEC, 2018: URTEC-2903065-MS.
[12] 范斐, 庞巨丰, 徐佳, 等 . 井周声波成像测井仪原理与应用[J]. 计量与测试技术, 2009, 36(8): 74-76.
[13] 张建军, 潘恒超, 李浩. 超声成像测井工作原理与影响因素[J]. 声学与电子工程, 2001(2): 32-36.
[14] 聂世均. 超声波在泥浆中的传输规律研究[D]. 北京: 中国石油大学(北京), 2007.
[15] 占志鹏. 井周超声成像仪主控系统设计[D]. 成都: 电子科技大学, 2020.
[16] 陶钧, 白庆杰, 肖占山, 等 . 超声测井仪器数据压缩算法研究[J]. 电子测量技术, 2018, 41(6): 32-39.
[17] 胡海杰 . 超声波随钻测井仪的研究[D]. 杭州: 浙江大学, 2021.
[18] 孟丽杰 . 高性能超声反射测井仪控制部分设计与实现[D]. 荆州: 长江大学, 2015.
[19] 何允禄 . 超声测井仪回波信号检测算法研究与实现[D]. 武汉: 华中科技大学, 2012.
[20] 倪卫宁, 朱祖扬, 张卫, 等 . 高精度微距超声波测距系统[J]. 仪表技术与传感器, 2014(1): 75-76, 92.
[21] 夏琼. 基于超声波技术的井壁成像系统设计[J]. 化工管理, 2018(24): 65.
[22] 邹骁 . 超声随钻测井径仪方案设计和处理与存储部分的实现[D]. 荆州: 长江大学, 2014.
[23] 黄昕. 井周超声成像仪前端电路模块设计[D]. 成都: 电子科技大学, 2020.
[24] 林书玉 . 超声技术的基石: 超声换能器的原理及设计[J]. 物理, 2009, 38(3): 141-148.
[25] 贾宝贤, 边文凤, 赵万生, 等 . 压电超声换能器的应用与发展[J]. 压电与声光, 2005, 27(2): 131-135.
[26] 曾凡冲. 超声换能器的设计理论研究[D]. 北京: 北方工业大学, 2013.
[27] Zemanek J, Caldwell R L, Glenn E E Jr, et al. The borehole TeleviewerA new logging concept for fracture location and other types of borehole inspection[J]. Journal of Petroleum Technology, 1969, 21(6): 762-774.
[28] Wiley R. Borehole televiewer—Revisited[C]//SPWLA 21st Annual Logging Symposium. Lafayette: SPWLA, 1980: SPWLA-1980-HH.
[29] Faraguna J K, Chance D M, Schmidt M G. An improved borehole televiewer system: Image acquisition, analysis and integration[C]//SPWLA 30th Annual Logging Symposium. Denver: SPWLA, 1989: SPWLA-1989-UU.
[30] Seller D, Edmiston C, Torres O, et al. Field performance of a new borehole televiewer tool and associated image processing techniques[C]//SPWLA 31st Annual Logging Symposium. Lafayette: SPWLA, 1990: SPWLA-1990-H.
[31] Graham W L, Silva C I, Leimkuhler J M, et al. Cement evaluation and casing inspection with advanced ultrasonic scanning methods[C]//SPE Annual Technical Conference and Exhibition. Richardson: SPE, 1997: SPE-38651-MS.
[32] Hayman A J, Parent P, Cheung P, et al. Improved borehole imaging by ultrasonics[J]. SPE Production & Operations, 1998, 13(1): 5-14.
[33] Morys M, Chemali R, Goodman G, et al. Field testing of an advanced LWD imager for oil-based mud applications [J]. Petrophysics, 2011, 52(2): 84-95.
[34] Li P, Lee J, Taher A, et al. High-resolution ultrasonic borehole imaging enhances reservoir evaluation in oil-based muds[C]//SPE Annual Technical Conference and Exhibition. Richardson: SPE, 2019: SPE-196126-MS.
[35] Li P, Lee J, Taher A, et al. New 4¾-in. high-resolution ultrasonic borehole imaging for unconventional reservoir evaluation[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver: URTEC, 2019: URTEC-2019-322-MS.
[36] Li P, Lee J, Coates R, et al. New 4¾ -in. ultrasonic LWD technology provides high-resolution caliper and imaging in oil-based and water-based muds[C]//SPWLA 60th Annual Logging Symposium. The Woodlands: SPWLA, 2019: SPWLA-2019-T.
[37] Al-Azmi M S, Al-Otaibi F B, Joshi G K, et al. Optimizing completion design through fracture evaluation in oil-based mud using high-resolution LWD ultrasonic images[C]// Abu Dhabi International Petroleum Exhibition & Conference. Richardson: SPE, 2019: SPE-197844-MS.
[38] Leonard Z S. Development of a downhole ultrasonic transducer for imaging while drilling[C]//2016 IEEE International Ultrasonics Symposium. Piscataway: IEEE Press, 2016: 1-4.
[39] Leonard Z S, Rahman S, Steinsiek R R. Development of transducer and electronics technology for an LWD ultrasonic imaging tool[C]//Offshore Technology Conference. Houston: OTC, 2017: OTC-27758-MS.
[40] Gillen M E, Moody B, Dymmock S. New LWD technology provides high-resolution images in oil- and water-based muds for improved decision making in real time[C]//Offshore Technology Conference. Houston: OTC, 2018: OTC-28952-MS.
[41] Ritzmann N, Steinsiek R, Dymmock S, et al. High-resolution LWD acoustic borehole imaging in WBM and OBM[C]//Offshore Mediterranean Conference and Exhibition. Ravenna: OMC, 2019: OMC-2019-1064.
[42] Maeso C, Horstman M, Dua R. A New High-resolution integrated resistivity and acoustic LWD imager in oil-base mud: A case study from offshore norway[C]//80th EAGE Conference and Exhibition 2018. Copenhagen: European Association of Geoscientists & Engineers, 2018(1): 1-5.
[43] Maeso C, Legendre E, Hori H, et al. Field test results of a new high-resolution, dual-physics, logging-while-drilling imaging tool in oil-base mud[C]//SPWLA 59th Annual Logging Symposium. London: SPWLA, 2018: SPWLA-2018-U.
[44] Gelman A, Maeso C, Godet V, et al. Feature compensated borehole image compression for real-time logging while drilling[C]//SPE Annual Technical Conference and Exhibition. Richardson: SPE, 2019: SPE-196103-MS.
[45] Shrivastava C, Maeso C, Wibowo V. Image logs worth hundred applications: Industry's first innovative high-resolution dual-imager logging-while-drilling technology overcomes barriers of oil-base-mud[C]//Third EAGE Borehole Geology Workshop. Muscat: European Association of Geoscientists & Engineers, 2019(1): 1-5.
[46] Shrivastava C, Maeso C, Wibowo V, et al. Multi-measurement logging-while-drilling imager: New enabler for wide-scale comprehensive geosciences applications in oil-base mud[C]//Abu Dhabi International Petroleum Exhibition & Conference. Richardson: SPE, 2019: SPE-197402-MS.
[47] Shrivastava C, Maeso C, Wibowo V, et al. Overcoming the oil base mud barrier for high resolution imaging while drilling: An industry first technology advancement for borehole image acquisition[C]//Offshore Technology Conference Asia. Kuala Lumpur: OTC, 2020: OTC-30169-MS. 
[48] Blyth M, Sakiyama N, Hori H, et al. Revealing hidden information: High-resolution logging-while-drilling slowness measurements and imaging using advanced dual ultrasonic technology[J]. Petrophysics, 2021, 62(1): 89-108.
文章导航

/