[1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454.
[2] 贾承造, 郑民, 张永峰 . 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
[3] 许明亮, 任大明, 黄焌淞, 等. 多功能超声成像测井仪在工程测井中的应用[J]. 天津科技, 2021, 48(2): 66-69.
[4] 秦绪英, 肖立志, 索佰峰 . 随钻测井技术最新进展及其应用[J]. 勘探地球物理进展, 2003(4): 313-322.
[5] 路保平, 倪卫宁 . 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148-155.
[6] 朱祖扬 . 随钻声波测井技术发展现状[J]. 石油管材与仪器, 2015, 1(6): 6-9, 15.
[7] 章俊燕 . 超声波技术在成像测井仪中的应用[J]. 舰船电子工程, 2005, 25(4): 92-95.
[8] 孙加华, 肖洪伟, 幺忠文, 等. 声电成像测井技术在储层裂缝识别中的应用[J]. 大庆石油地质与开发, 2006, 25(3): 100-102, 110.
[9] Ciuperca C L, Tommaso D D, Dawber M, et al. Determining wellbore stability parameters using a new LWD high resolution ultrasonic imaging tool[C]//SPE/IADC International Drilling Conference and Exhibition. Richardson: SPE, 2019: SPE-194074-MS.
[10] 李红欣, 李天林, 杜江. 成像测井技术的现状及其应用[J]. 石油和化工设备, 2013, 16(6): 40-41.
[11] Morys M, Knizhnik S, Duncan A R, et al. Advances in borehole imaging in unconventional reservoirs[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston: URTEC, 2018: URTEC-2903065-MS.
[12] 范斐, 庞巨丰, 徐佳, 等 . 井周声波成像测井仪原理与应用[J]. 计量与测试技术, 2009, 36(8): 74-76.
[13] 张建军, 潘恒超, 李浩. 超声成像测井工作原理与影响因素[J]. 声学与电子工程, 2001(2): 32-36.
[14] 聂世均. 超声波在泥浆中的传输规律研究[D]. 北京: 中国石油大学(北京), 2007.
[15] 占志鹏. 井周超声成像仪主控系统设计[D]. 成都: 电子科技大学, 2020.
[16] 陶钧, 白庆杰, 肖占山, 等 . 超声测井仪器数据压缩算法研究[J]. 电子测量技术, 2018, 41(6): 32-39.
[17] 胡海杰 . 超声波随钻测井仪的研究[D]. 杭州: 浙江大学, 2021.
[18] 孟丽杰 . 高性能超声反射测井仪控制部分设计与实现[D]. 荆州: 长江大学, 2015.
[19] 何允禄 . 超声测井仪回波信号检测算法研究与实现[D]. 武汉: 华中科技大学, 2012.
[20] 倪卫宁, 朱祖扬, 张卫, 等 . 高精度微距超声波测距系统[J]. 仪表技术与传感器, 2014(1): 75-76, 92.
[21] 夏琼. 基于超声波技术的井壁成像系统设计[J]. 化工管理, 2018(24): 65.
[22] 邹骁 . 超声随钻测井径仪方案设计和处理与存储部分的实现[D]. 荆州: 长江大学, 2014.
[23] 黄昕. 井周超声成像仪前端电路模块设计[D]. 成都: 电子科技大学, 2020.
[24] 林书玉 . 超声技术的基石: 超声换能器的原理及设计[J]. 物理, 2009, 38(3): 141-148.
[25] 贾宝贤, 边文凤, 赵万生, 等 . 压电超声换能器的应用与发展[J]. 压电与声光, 2005, 27(2): 131-135.
[26] 曾凡冲. 超声换能器的设计理论研究[D]. 北京: 北方工业大学, 2013.
[27] Zemanek J, Caldwell R L, Glenn E E Jr, et al. The borehole TeleviewerA new logging concept for fracture location and other types of borehole inspection[J]. Journal of Petroleum Technology, 1969, 21(6): 762-774.
[28] Wiley R. Borehole televiewer—Revisited[C]//SPWLA 21st Annual Logging Symposium. Lafayette: SPWLA, 1980: SPWLA-1980-HH.
[29] Faraguna J K, Chance D M, Schmidt M G. An improved borehole televiewer system: Image acquisition, analysis and integration[C]//SPWLA 30th Annual Logging Symposium. Denver: SPWLA, 1989: SPWLA-1989-UU.
[30] Seller D, Edmiston C, Torres O, et al. Field performance of a new borehole televiewer tool and associated image processing techniques[C]//SPWLA 31st Annual Logging Symposium. Lafayette: SPWLA, 1990: SPWLA-1990-H.
[31] Graham W L, Silva C I, Leimkuhler J M, et al. Cement evaluation and casing inspection with advanced ultrasonic scanning methods[C]//SPE Annual Technical Conference and Exhibition. Richardson: SPE, 1997: SPE-38651-MS.
[32] Hayman A J, Parent P, Cheung P, et al. Improved borehole imaging by ultrasonics[J]. SPE Production & Operations, 1998, 13(1): 5-14.
[33] Morys M, Chemali R, Goodman G, et al. Field testing of an advanced LWD imager for oil-based mud applications [J]. Petrophysics, 2011, 52(2): 84-95.
[34] Li P, Lee J, Taher A, et al. High-resolution ultrasonic borehole imaging enhances reservoir evaluation in oil-based muds[C]//SPE Annual Technical Conference and Exhibition. Richardson: SPE, 2019: SPE-196126-MS.
[35] Li P, Lee J, Taher A, et al. New 4¾-in. high-resolution ultrasonic borehole imaging for unconventional reservoir evaluation[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver: URTEC, 2019: URTEC-2019-322-MS.
[36] Li P, Lee J, Coates R, et al. New 4¾ -in. ultrasonic LWD technology provides high-resolution caliper and imaging in oil-based and water-based muds[C]//SPWLA 60th Annual Logging Symposium. The Woodlands: SPWLA, 2019: SPWLA-2019-T.
[37] Al-Azmi M S, Al-Otaibi F B, Joshi G K, et al. Optimizing completion design through fracture evaluation in oil-based mud using high-resolution LWD ultrasonic images[C]// Abu Dhabi International Petroleum Exhibition & Conference. Richardson: SPE, 2019: SPE-197844-MS.
[38] Leonard Z S. Development of a downhole ultrasonic transducer for imaging while drilling[C]//2016 IEEE International Ultrasonics Symposium. Piscataway: IEEE Press, 2016: 1-4.
[39] Leonard Z S, Rahman S, Steinsiek R R. Development of transducer and electronics technology for an LWD ultrasonic imaging tool[C]//Offshore Technology Conference. Houston: OTC, 2017: OTC-27758-MS.
[40] Gillen M E, Moody B, Dymmock S. New LWD technology provides high-resolution images in oil- and water-based muds for improved decision making in real time[C]//Offshore Technology Conference. Houston: OTC, 2018: OTC-28952-MS.
[41] Ritzmann N, Steinsiek R, Dymmock S, et al. High-resolution LWD acoustic borehole imaging in WBM and OBM[C]//Offshore Mediterranean Conference and Exhibition. Ravenna: OMC, 2019: OMC-2019-1064.
[42] Maeso C, Horstman M, Dua R. A New High-resolution integrated resistivity and acoustic LWD imager in oil-base mud: A case study from offshore norway[C]//80th EAGE Conference and Exhibition 2018. Copenhagen: European Association of Geoscientists & Engineers, 2018(1): 1-5.
[43] Maeso C, Legendre E, Hori H, et al. Field test results of a new high-resolution, dual-physics, logging-while-drilling imaging tool in oil-base mud[C]//SPWLA 59th Annual Logging Symposium. London: SPWLA, 2018: SPWLA-2018-U.
[44] Gelman A, Maeso C, Godet V, et al. Feature compensated borehole image compression for real-time logging while drilling[C]//SPE Annual Technical Conference and Exhibition. Richardson: SPE, 2019: SPE-196103-MS.
[45] Shrivastava C, Maeso C, Wibowo V. Image logs worth hundred applications: Industry's first innovative high-resolution dual-imager logging-while-drilling technology overcomes barriers of oil-base-mud[C]//Third EAGE Borehole Geology Workshop. Muscat: European Association of Geoscientists & Engineers, 2019(1): 1-5.
[46] Shrivastava C, Maeso C, Wibowo V, et al. Multi-measurement logging-while-drilling imager: New enabler for wide-scale comprehensive geosciences applications in oil-base mud[C]//Abu Dhabi International Petroleum Exhibition & Conference. Richardson: SPE, 2019: SPE-197402-MS.
[47] Shrivastava C, Maeso C, Wibowo V, et al. Overcoming the oil base mud barrier for high resolution imaging while drilling: An industry first technology advancement for borehole image acquisition[C]//Offshore Technology Conference Asia. Kuala Lumpur: OTC, 2020: OTC-30169-MS.
[48] Blyth M, Sakiyama N, Hori H, et al. Revealing hidden information: High-resolution logging-while-drilling slowness measurements and imaging using advanced dual ultrasonic technology[J]. Petrophysics, 2021, 62(1): 89-108.