论文

缺血性脑卒中关键基因的筛选及治疗药物的预测

  • 王玥 ,
  • 周玥 ,
  • 赵丽
展开
  • 1. 首都医科大学附属北京安定医院,国家精神心理疾病临床医学研究中心,精神疾病诊断与治疗北京市重点实验室,北京 100088
    2. 首都医科大学人脑保护高精尖创新中心,北京 100069
    3. 首都医科大学基础医学院神经生物学系,北京 100069
王玥,副主任医师、副教授,研究方向为脑血管病和认知障碍的发病机制和早期诊断,电子信箱:wyjoe2000@163.com

收稿日期: 2022-08-13

  修回日期: 2023-03-20

  网络出版日期: 2023-06-01

基金资助

国家自然科学基金面上项目(82071539);北京市自然科学基金面上项目(7222064)

Screening of key genes and prediction of therapeutic agents for ischemic stroke based on transcriptome sequencing and bioinformatics methods

  • WANG Yue ,
  • ZHOU Yue ,
  • ZHAO Li
Expand
  • 1. The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
    2. Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
    3. Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China

Received date: 2022-08-13

  Revised date: 2023-03-20

  Online published: 2023-06-01

摘要

运用生物信息学方法初步筛选缺血性脑卒中(ischemic stroke,IS)相关的差异表达基因(differentially expressed genes,DEGs)和关键基因(hub genes),进而预测潜在的 IS 治疗药物。对正常组和双侧颈内动脉闭塞(bilateral internal carotid artery occlusion,BICAO)组的大鼠皮层进行转录组测序(RNA-sequencing,RNA-Seq),对筛选得到的DEGs进行GO和KEGG富集分析,并构建DEGs的蛋白互作网络,获得关键基因,根据关键基因预测IS相关药物。本研究共得到197个显著DEGs,这些基因主要参与代谢、神经活性配体-受体相互作用、补体和凝血级联反应、类固醇激素生物合成等途径。DEGs间有着紧密的相互关系,相互关系最为密切的基因中,ORM1、SERPINA1、GC都参加炎症、氧化应激和凋亡过程,是IS发病过程的关键基因。因此,炎症、氧化应激和凋亡在IS的发生发展中起重要作用,针对IS的关键基因如ORM1、SERPINA1、GC进行药物治疗有潜在的临床意义。

本文引用格式

王玥 , 周玥 , 赵丽 . 缺血性脑卒中关键基因的筛选及治疗药物的预测[J]. 科技导报, 2023 , 41(9) : 89 -97 . DOI: 10.3981/j.issn.1000-7857.2023.09.011

Abstract

In this study, bioinformatics methods were used to preliminarily screen ischemic stroke (IS)-related differentially expressed genes (DEGs) and hub genes, and then predict potential IS therapeutics. DEGs were screened after transcriptome sequencing (RNA-Seq) in the cortex of the normal group and the bilateral internal carotid artery occlusion (BICAO) group. GO and KEGG enrichment analysis of DEGs were performed and protein interaction networks of DEGs were constructed, and key genes were obtained. Finally, IS related drugs were predicted according to the key genes. A total of 197 significant DEGs were obtained in this study, and enrichment analysis showed that these genes were mainly involved in metabolism, neuroactive ligandreceptor interactions, complement/coagulation cascade and biosynthesis of steroid hormones. DEGs have a close interrelationship, and among the genes most closely related, ORM1, SERPINA1 and GC all participate in the process of inflammation, oxidative stress and apoptosis, which are the key genes in the pathogenesis of IS. Therefore, inflammation, oxidative stress and apoptosis may be closely related to the occurrence and development of IS. It has potential clinical significance for drug treatment targeting hub genes such as ORM1, SERPINA1, and GC.

参考文献

[1] Campbell B C V, de Silva D A, Macleod M R, et al. Ischaemic stroke[J]. Nature Reviews Disease Primers, 2019, 5(1): 70.
[2] Maida C D, Norrito R L, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches[J]. International Journal of Molecular Sciences, 2020, 21(18): 6454.
[3] Won S J, Kim J E, Cittolin-Santos G F, et al. Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress[J]. The Journal of Neuroscience, 2015, 35(18): 7143-7152.
[4] Vidale S, Consoli A, Arnaboldi M, et al. Postischemic inflammation in acute stroke[J]. Journal of Clinical Neurology, 2017, 13(1): 1-9.
[5] Sorby-Adams A J, Marcoionni A M, Dempsey E R, et al. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury[J]. International Journal of Molecular Sciences, 2017, 18(8): 1788.
[6] 梁宏艳, 李明, 惠文, 等. 急性缺血性卒中患者救治时间延迟的研究进展[J]. 中国脑血管病杂志, 2019, 16(12):662-666.
[7] Akalin P K. Introduction to bioinformatics[J]. Molecular Nutrition & Food Research, 2006, 50(7): 610-619.
[8] Zou R, Zhang D, Lü L, et al. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke[J]. Journal of Translational Medicine, 2019, 17(1): 45.
[9] Jiang C T, Wu W F, Deng Y H, et al. Modulators of microglia activation and polarization in ischemic stroke[J]. Molecular Medicine Reports, 2020, 21(5): 2006-2018.
[10] Annesley S J, Fisher P R. Mitochondria in health and disease[J]. Cells, 2019, 8(7): 680.
[11] Yang J L, Mukda S, Chen S D. Diverse roles of mitochondria in ischemic stroke[J]. Redox Biology, 2018, 16: 263-275.
[12] Narne P, Pandey V, Phanithi P B. Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection[J]. Molecular and Cellular Neuroscience, 2017, 82: 176-194. 
[13] 陈志奇, 兰小英. D-二聚体、纤维蛋白原联合血小板计数对缺血性脑卒中的诊断价值研究[J]. 吉林医学, 2022, 43(7): 1934-1937.
[14] Duan J, Gao S, Tu S, et al. Pathophysiology and therapeutic potential of NADPH oxidases in ischemic stroke-induced oxidative stress[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 6631805.
[15] Andrabi S S, Parvez S, Tabassum H. Ischemic stroke and mitochondria: Mechanisms and targets[J]. Protoplasma, 2020, 257(2): 335-343.
[16] Kiselyov K, Muallem S. ROS and intracellular ion channels[J]. Cell Calcium, 2016, 60: 108-114.
[17] Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation[J]. Nature Medicine, 2011, 17(7): 796-808.
[18] Qiong L, Yin J. Characterization of alpha-1-acid glycoprotein as a potential biomarker for breast cancer[J]. Bioengineered, 2022, 13(3): 5818-5826.
[19] Mondal G, Chatterjee U, Das H R, et al. Enhanced expression of alpha1-acid glycoprotein and fucosylation in hepatitis B patients provides an insight into pathogenesis[J]. Glycoconjugate Journal, 2009, 26(9): 1225-1234.
[20] Qiong L, Yin J. Orosomucoid 1 promotes epirubicin resistance in breast cancer by upregulating the expression of matrix metalloproteinases 2 and 9[J]. Bioengineered, 2021, 12(1): 8822-8832.
[21] Lopez S, Martinez-Perez A, Rodriguez-Rius A, et al. Integrated GWAS and gene expression suggest ORM1 as a potential regulator of plasma levels of cell-free DNA and thrombosis risk[J]. Thrombosis and Haemostasis, 2022, 122(6): 1027-1039.
[22] Tiensuu H, Haapalainen A M, Tissarinen P, et al. Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth[J].BMC Medicine, 2022, 20(1): 141.
[23] Cabezas-Llobet N, Camprubí S, García B, et al. Human alpha 1-antitrypsin protects neurons and glial cells against oxygen and glucose deprivation through inhibition of interleukins expression[J]. Biochimica et Biophysica Acta: General Subjects, 2018, 1862(9): 1852-1861.
[24] Moldthan H L, Hirko A C, Thinschmidt J S, et al. Alpha 1-antitrypsin therapy mitigated ischemic stroke damage in rats[J]. Journal of Stroke & Cerebrovascular Diseases, 2014, 23(5): e355-e363.
[25] Moon M, Song H, Hong H J, et al. Vitamin D-binding protein interacts with Aβ and suppresses Aβ-mediated pathology[J]. Cell Death and Differentiation, 2013, 20(4): 630-638.
[26] Schneider A L, Lutsey P L, Selvin E, et al. Vitamin D, vitamin D binding protein gene polymorphisms, race and risk of incident stroke: The atherosclerosis risk in communities (ARIC) study[J]. European Journal of Neurology, 2015, 22(8): 1220-1227.
[27] Zhao Y, Rempe D A. Prophylactic neuroprotection against stroke: Low-dose, prolonged treatment with deferoxamine or deferasirox establishes prolonged neuroprotection independent of HIF-1 function[J]. Journal of Cerebral Blood Flow & Metabolism, 2011, 31(6): 1412-1423.
文章导航

/