专题:先进列控技术

轨道交通机器人应用研究进展

  • 祝瑞祥 ,
  • 裴轩 ,
  • 侯涛刚
展开
  • 北京交通大学电子信息工程学院,北京 100044
祝瑞祥,硕士研究生,研究方向为智能机器人技术,电子信箱:20120291@bjtu.edu.cn

收稿日期: 2022-12-23

  修回日期: 2023-04-12

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金青年基金项目(62103035);北京市自然科学基金面上项目(3222016);中国博士后科学基金项目(2021M690337);中央高校基本科研业务费专项(2020JBM265);北京市城市轨道交通实验室项目(353203535)

Advances in the application research of rail transit robots

  • ZHU Ruixiang ,
  • PEI Xuan ,
  • HOU Taogang
Expand
  • School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Received date: 2022-12-23

  Revised date: 2023-04-12

  Online published: 2023-06-26

摘要

总结了机器人技术在轨道交通的装备制造、运维巡检、运营服务3个方面的应用,结合智能机器人技术在该领域的发展现状,总结了机器人的核心技术挑战,提出了未来机器人技术与轨道交通融合发展的方向。

本文引用格式

祝瑞祥 , 裴轩 , 侯涛刚 . 轨道交通机器人应用研究进展[J]. 科技导报, 2023 , 41(10) : 43 -61 . DOI: 10.3981/j.issn.1000-7857.2023.10.004

Abstract

This paper summarizes the application of robotics in the three aspects of rail transit, i.e., equipment manu-facturing, maintenance inspection, and operation services. Combined with the development status of intel-ligent robot technology in this field, we summarize the key technology and challenges of robots. Thus to propose the future direction of the cooperation of robotics and rail transit.

参考文献

[1] 朱志民, 方孝钟, 周勇, 等. 工业机器人在轨道交通制造中的应用现状及发展趋势[J]. 金属加工(热加工), 2021(1): 7-12.
[2] 黄建鹏 . 重型机械智能焊接应用现状及其发展趋势[J].金属加工(热加工), 2022(1): 18-21.
[3] 陈茂爱, 任文建, 闫建新, 等 . 焊接机器人技术[M]. 北京: 化学工业出版社, 2019: 28-30.
[4] Geng Y S, Lai M, Tian X C, et al. A novel seam extraction and path planning method for robotic welding of medium-thickness plate structural parts based on 3D vision[J]. Robotics and Computer-Integrated Manufacturing, 2023, 79: 102433.
[5] Xiao R Q, Xu Y L, Hou Z, et al. A novel visual guidance framework for robotic welding based on binocular cooperation[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102393.
[6] Liu C F, Shen J Q, Hu S S, et al. Seam tracking system based on laser vision and CGAN for robotic multi-layer and multi-pass MAG welding[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105377.
[7] Wang X W, Zhou X, Xia Z L, et al. A survey of welding robot intelligent path optimization[J]. Journal of Manufacturing Processes, 2021, 63: 14-23.
[8] Zheng C, An Y S, Wang Z X, et al. Hybrid offline programming method for robotic welding systems[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102238.
[9] Wang Q Y, Jiao W H, Wang P, et al. A tutorial on deep learning-based data analytics in manufacturing through a welding case study[J]. Journal of Manufacturing Processes, 2021, 63: 2-13.
[10] Kershaw J, Yu R, Zhang Y M, et al. Hybrid machine learning-enabled adaptive welding speed control[J]. Journal of Manufacturing Processes, 2021, 71: 374-383.
[11] Xiao X F, Liu X B, Cheng M P, et al. Towards monitoring laser welding process via a coaxial pyrometer[J]. Journal of Materials Processing Technology, 2020, 277: 116409.
[12] Yao P, Zhou K, Zhu Q. Quantitative evaluation method of arc sound spectrum based on sample entropy[J]. Mechanical Systems and Signal Processing, 2017, 92: 379-390.
[13] Lei Z K, Zou J C, Wang D W, et al. Finite-element inverse analysis of residual stress for laser welding based on a contour method[J]. Optics & Laser Technology, 2020, 129: 106289.
[14] Fan X A, Gao X D, Liu G Q, et al. Research and prospect of welding monitoring technology based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11): 3365-3391.
[15] Li W M, Mei F, Hu Z, et al. Multiple weld seam laser vision recognition method based on the IPCE algorithm[J]. Optics & Laser Technology, 2022, 155: 108388.
[16] 刘亚军, 訾斌, 王正雨, 等 . 智能喷涂机器人关键技术研究现状及进展[J]. 机械工程学报, 2022, 58(7): 53-74.
[17] Qian H M, Li Y F, Huang H Z. Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model[J]. Reliability Engineering and System Safety, 2020, 199: 106936.
[18] Guo S X, He Y L, Shi L W, et al. Modal and fatigue analysis of critical components of an amphibious spherical robot[J]. Microsyst Technologies, 2017, 23(6): 2233-2247.
[19] Xia M, Li T, Shu T X, et al. A two-stage approach for the remaining useful life prediction of bearings using deep neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3703-3711.
[20] Liu J, Wang W, Ma F, et al. A data-model-fusion prognostic framework for dynamic system state forecasting[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 814-823.
[21] 缪东晶, 王国磊, 吴聊, 等 . 自由曲面均匀喷涂的机器人轨迹规划方法[J].清华大学学报 (自然科学版), 2013, 53(10): 1418-1423.
[22] Chen H P, Fuhlbrigge T, Li X Z. A review of CADbased robot path planning for spray painting[J]. Industrial Robot, 2009, 36: 45-50.
[23] Tolba A S, Raafat H M. Multiscale image quality measures for defect detection in thin films[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1): 113-122.
[24] Chen K Y, Zeng Z Y, Yang J F. A deep region-based pyramid neural network for automatic detection and multi-classification of various surface defects of aluminum alloys[J]. Journal of Building Engineering, 2021, 43: 102523.
[25] Xu R G, Hao R Y, Huang B Q. Efficient surface defect detection using self-supervised learning strategy and segmentation network[J]. Advanced Engineering Informatics, 2022, 52: 101566.
[26] 訾斌, 徐锋, 唐锴, 等 . 基于机器视觉的喷涂机器人轨迹规划与涂装质量检测研究综述[J]. 控制与决策, 2023, 38(1): 1-21.
[27] Chen Y, Chen W Z, Li B, et al. Paint thickness simulation for painting robot trajectory planning: A review[J]. Industrial Robot, 2017, 44: 629-638.
[28] Kim J Y. Vision-based measurement of part deformation and misalignment for deformable cylindrical peg-in-hole tasks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219(6): 589-606.
[29] Triyonoputro J C, Wan W W, Harada K. Quickly inserting pegs into uncertain holes using multi-view images and deep network trained on synthetic data[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 5792-5799.
[30] 程俊森, 吴文荣, 杨毅, 等 . 智能微装配技术研究综述[J]. 现代制造工程, 2022(6): 142-152.
[31] Kleeberger K, Bormann R, Kraus W, et al. A survey on learning-based robotic grasping[J]. Current Robotics Reports, 2020, 1(4): 239-249.
[32] Jing G Q, Qin X Y, Wang H Y, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242.
[33] Loccioni Felix. Robot for switches & crossings inspections[EB/OL]. (2021-05-21) [2022-12-16]. https://www.loccioni.com/en/railway.
[34] Loccioni Felix. The mobile robot for railway switches & crossings dimensional measurements[EB/OL]. (2018-08-16) [2022-12-16]. https://www. loccioni. com/wp-content/uploads/2018/08/loccioni-felix-a2-brochure.pdf.
[35] Zhang W Y, Zhang Z J, Qi D P, et al. Automatic crack detection and classification method for subway tunnel safety monitoring[J]. Sensors, 2014, 14(10): 19307-19328.
[36] Huang H W, Li Q T, Zhang D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176.
[37] Phillips S, Narasimhan S. Automating data collection for robotic bridge inspections[J]. Journal of Bridge Engineering, 2019, 24(8): 04019075.
[38] 更轻快更智能更精准 第六代桥梁拉索检测机器人首次应用于跨江桥梁[J]. 西部交通科技, 2022(5): 209.
[39] Zheng Z L, Ding N, Chen H P, et al. CCRobot-V: A silkworm-like cooperative cable-climbing robotic system for cable inspection and maintenance[C]//2022 International Conference on Robotics and Automation(ICRA). Piscataway: IEEE, 2022: 164-170.
[40] Shenhao Technology. Robot product display[EB/OL].(2021-06-04) [2022-12-16]. https://www. shenhaoinfo. com/category/p2.
[41] Sánchez A, Bravo J L, González A. Estimating the accuracy of track-surveying trolley measurements for railway maintenance planning[J]. Journal of Surveying Engineering, 2017, 143(1): 05016008.
[42] Valigi M C, Logozzo S, Meli E, et al. New instrumented trolleys and a procedure for automatic 3D optical inspection of railways[J]. Sensors, 2020, 20(10): 2927.
[43] Ensco. Autonomous inspection systems[EB/OL]. [2023-03-12]. https://www. ensco. com/rail/autonomous-inspection-systems.
[44] Fugro. Fugro rila track geometry[EB/OL]. [2023-03-12]. https://media. fugro. com/media/docs/default-source/industries/business-infrastructure/rila-track-geometry_2018. pdf?sfvrsn=804a081a_16.
[45] AEVEX Aerospace. Geo-MMS LiDAR used for railway drone inspection[EB/OL]. [2023-03-12]. https://geodetics.com/railway-drone-inspection/.
[46] Shi B, Yang M, Liu J, et al. Rail transit shield tunnel deformation detection method based on cloth simulation filtering with point cloud cylindrical projection[J]. Tunnelling and Underground Space Technology, 2023, 135: 105031.
[47] Sutter B, Lelevé A, Pham M T, et al. A semi-autonomous mobile robot for bridge inspection[J]. Automation in Construction, 2018, 91: 111-119.
[48] Jiang S, Wu Y Q, Zhang J. Bridge coating inspection based on two-stage automatic method and collision-tolerant unmanned aerial system[J]. Automation in Construction, 2023, 146: 104685.
[49] 林瑞宣 . 轨道交通站内服务机器人设计研究[D]. 北京: 北京交通大学建筑与艺术学院, 2021.
[50] McGinn C. Why do robots need a head? the role of social interfaces on service robots[J]. International Journal of Social Robotics, 2020, 12(1): 281-295.
[51] Deuerlein C, Langer M, Seßner J, et al. Human-robot-interaction using cloud-based speech recognition systems[J]. Procedia CIRP, 2021, 97: 130-135.
[52] 陈赢峰 . 大规模复杂场景下室内服务机器人导航的研究[D]. 合肥: 中国科学技术大学, 2017.
[53] Henkel C, Bubeck A, Xu W L. Energy efficient dynamic window approach for local path planning in mobile service robotics[J]. IFAC-PapersOnLine, 2016, 49(15): 32-37.
[54] Wilson A N, Kumar A, Jha A, et al. Embedded sensors, communication technologies, computing platforms and machine learning for UAVs: A review[J]. IEEE Sensors Journal, 2022, 22(3): 1807-1826.
[55] Martinez-Martin E, del Pobil A P. Object detection and recognition for assistive robots: Experimentation and implementation[J]. IEEE Robotics & Automation Magazine, 2017, 24(3): 123-138.
[56] Chen S F, Yang D Z, Liu J, et al. Automatic weld type classification, tacked spot recognition and weld ROI determination for robotic welding based on modified YOLOv5[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102490.
[57] Li Q Y, Shi Z P, Zhang H Y, et al. A cyber-enabled visual inspection system for rail corrugation[J]. Future Generation Computer Systems, 2018, 79(1): 374-382.
[58] Wei X K, Yang Z M, Liu Y X, et al. Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 66-81.
[59] Wang T G, Yang F F, Tsui K L. Real-time detection of railway track component via one-stage deep learning networks[J]. Sensors, 2020, 20(15): 4325.
[60] Singh J K, Singh K D, Thakur K, et al. Computer-vision based object detection and recognition for service robot in indoor environment[J]. Com-puters, Materials & Continua, 2022, 72(1): 197-213.
[61] Sánchez-Ibáñez J R, Pérez-del-Pulgar C J, García-Cerezo A. Path planning for autonomous mobile robots: A review[J]. Sensors, 2021, 21(23): 7898.
[62] Li G H, Tong S G, Cong F Y, et al. Improved artificial potential field-based simultaneous forward search method for robot path planning in complex environment[C]//2015 IEEE/SICE International Symposium on System Integration (SII). Piscataway: IEEE, 2016: 760-765.
[63] Ulrich I, Borenstein J. VFH: Local obstacle avoidance with look-ahead verification[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-tional Conference on Robotics and Automation. Symposia Proceedings. Piscataway: IEEE Press, 2002: 2505-2511.
[64] Mac T T, Copot C, Tran D T, et al. Heuristic approaches in robot path planning: A survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28.
[65] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
[66] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[67] Stentz A. Optimal and efficient path planning for partially-known environments[C]//Proceedings of the 1994 IEEE International Conference on Robot-ics and Automation. Piscataway: IEEE, 2002: 3310-3317.
[68] Suh J, Gong J, Oh S. Fast sampling-based cost-aware path planning with nonmyopic extensions using cross entropy[J]. IEEE Transactions on Robotics, 2017, 33(6):1313-1326.
[69] Zhou X, Wang X W, Xie Z H, et al. Online obstacle avoidance path planning and application for arc welding robot[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102413.
[70] Tonon D, Aronna M S, Kalise D. Optimal control: Novel directions and applications[M]. Cham: Springer International Publishing, 2017.
[71] Liu Z H, Liu Q, Xu W J, et al. Robot learning towards smart robotic manufacturing: A review[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102360.
[72] Meng T T, He W. Iterative learning control of a robotic arm experiment platform with input constraint[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 664-672.
[73] Yin X X, Pan L. Enhancing trajectory tracking accuracy for industrial robot with robust adaptive control[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 97-102.
[74] Yu J. Adaptive resistance spot welding process that reduces the shunting effect for automotive high-strength steels[J]. Metals, 2018, 8(10): 775.
[75] Yang C G, Jiang Y M, Na J, et al. Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics[J]. IEEE Transactions on Fuzzy Systems, 2018, 27(3): 574-588.
[76] Zhang K, Li D Y, Gui H, et al. Adaptive control for laser welding with filler wire of marine high strength steel with tight butt joints for large structures[J]. Journal of Manufacturing Processes, 2018, 36: 434-441.
[77] Liu Y K, Zhang Y M. Model-based predictive control of weld penetration in gas tungsten arc welding[J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 955-966.
[78] Lyu S K, Cheah C C. Data-driven learning for robot control with unknown Jacobian[J]. Automatica, 2020, 120: 109120.
[79] de Luca A, Flacco F. Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration[C]//2012 4th IEEE RAS & EMBS Internation-al Conference on Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE Press, 2012: 288-295.
[80] Hjorth S, Chrysostomou D. Human-robot collaboration in industrial environments: A literature review on non-destructive disassembly[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102208.
[81] Villani V, Pini F, Leali F, et al. Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications[J]. Mechatronics, 2018, 55: 248-266.
[82] Ong S K, Yew A W W, Thanigaivel N K, et al. Augmented reality-assisted robot programming system for industrial applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101820.
[83] Masood T, Egger J. Augmented reality in support of Industry 4.0—implementation challenges and success factors[J]. Robotics and Computer-Integrated Manufacturing, 2019, 58: 181-195.
[84] Peng L L, Zheng S B, Li P X, et al. A comprehensive detection system for track geometry using fused vision and inertia[J]. IEEE Transactions on Instrumentation and Measurement, 2020, doi: 10.1109/TIM.2020.3039301.
文章导航

/