专题:先进列控技术

基于协同控制的虚拟编组列车参考曲线生成方法

  • 刘宏杰 ,
  • 郎颖辉 ,
  • 张蕾 ,
  • 唐涛
展开
  • 1. 北京交通大学电子信息工程学院,北京 100044
    2. 北京交通大学轨道交通运行控制系统国家工程研究中心,北京 100044
    3. 交控科技股份有限公司交控研究院,北京 100070
    4. 北京交通大学轨道交通控制与安全国家重点实验室,北京 100044
刘宏杰,副研究员,研究方向为列控系统设计、集成与优化,电子信箱:hjliu2@bjtu.edu.cn

收稿日期: 2022-12-27

  修回日期: 2023-03-15

  网络出版日期: 2023-06-26

基金资助

中央高校基本科研业务费专项(2022JBQY001);北京市自然科学基金项目(L201004);城市轨道交通北京实验室项目;中国铁道科学研究院集团有限公司项目(2021YJ149)

A cooperative control based reference curve generating method for virtually coupled train sets

  • LIU Hongjie ,
  • LANG Yinghui ,
  • ZHANG Lei ,
  • TANG Tao
Expand
  • 1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
    2. National Engineering Research Center of Rail Transportation Operation and Control System, Beijing Jiaotong University, Beijing 100044, China
    3. Department of Research Institute, Traffic Control Technology Co., Ltd., Beijing 100070, China
    4. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Received date: 2022-12-27

  Revised date: 2023-03-15

  Online published: 2023-06-26

摘要

面向虚拟编组在城市轨道交通中的应用需求,提出了对虚拟编组列车运行具有重要影响的停站时间不同步问题,并定义了停站时间差的计算方式;在分析相关领域多智能体协同控制方法的基础上,提出了基于信息汇总集中决策型协同控制方式的虚拟编组列车参考曲线生成方法;构建了虚拟编组列车参考曲线生成问题的数学优化模型,并设计了基于强化学习DQN(deep Q network)的求解方法,在考虑全局优化目标的基础上为每一个列车单元生成各自的参考曲线,指导各列车单元协同运行控制实现虚拟编组列车整体运行的目标;基于北京地铁11号线真实数据进行了数值仿真实验并与既有文献中的虚拟编组列车运行控制方式进行了对比,实验结果验证了所提基于协同控制的虚拟编组列车参考曲线生成方法的有效性。

本文引用格式

刘宏杰 , 郎颖辉 , 张蕾 , 唐涛 . 基于协同控制的虚拟编组列车参考曲线生成方法[J]. 科技导报, 2023 , 41(10) : 62 -72 . DOI: 10.3981/j.issn.1000-7857.2023.10.005

Abstract

Virtual Coupling has been a hot research topic in railways in recent years. The proposed control methods in the existing literature for virtually coupled train sets (VCTS) mainly try to operate train units with the constraint of maintaining a small gap distance, but pay insufficient attention to the needs in the entering station process, which affects the work of VCTS in a station and is thus one of the most important part of VCTS in unban rail transits. To fill this gap, this paper firstly proposes an unsynchronized stopping problem between the train units in a VCTS when entering a station, defines the concept and the calculation method of stopping time difference between the train units. Then, inspired by the multi-agent cooperative control methods in related fields, a cooperative control-based reference curve generating method for VCTS is proposed. Followed by it, a mathematical optimization model to generate the reference curves for the train units in a VCTS is formulated, and a reinforcement learning DQN (deep Q network) based algorithm is designed to solve this problem. Optimized reference curves for each train units are generated automatically, considering the global objects and all constraints of VCTS. Finally, based on the real data of trains and lines from Beijing Metro Line 11, numerical simulation experiments are conducted. Experimental results prove the effectiveness of the proposed method which outperforms a commonly used control method of VCTS in the literature.

参考文献

[1] 马胜艳 . 新时期城市轨道交通发展方向探究[J]. 居舍, 2021(8): 1-2, 19.
[2] 施仲衡, 丁树奎 . 城市轨道交通绿色低碳发展策略[J].都市快轨交通, 2022, 35(1): 1-4, 11.
[3] 中国城市轨道交通协会. 中国城市轨道交通绿色城轨发展行动方案[J]. 城市轨道交通, 2022(8): 20-35.
[4] Bock U, Varchmin J U. Enhancement of the occupancy of railroads using virtually coupled train formations[C]// World Congress on Railway Research (WCRR). Paris:International Union of Railways, 1999: 19-23.
[5] 白佳薇, 张琦, 鲁放 . 城市轨道交通虚拟编组列车快慢车组织方案研究[J]. 都市快轨交通, 2022, 35(1): 126-133.
[6] 陈永明,崔佳诺 . 基于虚拟编组技术的重载铁路列控系统研究[J]. 铁道标准设计, 2022, 10.13238/j.issn.1004-2954.202203170001.
[7] 纪玉清, 欧冬秀, 常鸣, 等. 列车虚拟编组应用需求及关键技术研究[J]. 城市轨道交通研究, 2022, 25(11): 57-61.
[8] Niu H M, Zhou X S, Gao R H. Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints[J]. Transportation Research Part B: Methodological, 2015, 76: 117-135.
[9] 武强 . 城市轨道虚拟编组列车控制技术实现方法[J]. 电子测试, 2022(16): 41-43.
[10] 张友兵, 刘岭 . 基于虚拟编组的列车控制系统研究[J].铁道工程学报, 2022, 39(3): 94-100.
[11] 王建坤, 贾嘉琪 . 轨道交通列车运行控制系统的应用分析[J]. 科技创新与应用, 2022, 12(6): 194-196.
[12] Felez J, Kim Y, Borrelli F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739.
[13] Liu Y F, Zhou Y, Su S, et al. An analytical optimal control approach for virtually coupled high-speed trains with local and string stability[J]. Transportation Research Part C: Emerging Technologies, 2021, 125:102886.
[14] Liu Y F, Liu R H, Wei C F, et al. Distributed model predictive control strategy for constrained high-speed virtually coupled train set[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 171-183.
[15] 刘宏杰, 唐涛, 张艳兵, 等 . 城轨虚拟编组关键性能指标及技术探讨[J]. 都市快轨交通, 2023, 36(1): 28-35.
[16] 马子玉, 何明, 刘祖均, 等 . 无人机协同控制研究综述[J]. 计算机应用, 2021, 41(5): 1477-1483.
[17] 张志伟, 滕英元 . 机器人编队协同控制方法综述[J]. 机电信息, 2019(32): 28-30.
[18] 王飚, 李博, 高敏, 等 . 无人船的协同控制策略综述[J].中国水运(下半月), 2019, 19(2): 3-5.
[19] Okutake T, Uchida N, Yamamoto N. A collaborative safety flight control system for multiple drones[C]//2016 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). Piscataway: IEEE, 2016: 371-375.
[20] Bai W Q, Lin Z L, Dong H R. Coordinated control in the presence of actuator saturation for multiple high-speed trains in the moving block signaling system mode[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8054-8064.
[21] Li S K, Yang L X, Gao Z Y. Coordinated cruise control for high-speed train movements based on a multi-agent model[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 281-292.
[22] Huang Z C, Wu Q, Ma J, et al. An APF and MPC combined collaborative driving controller using vehicular communication technologies[J]. Chaos, Solitons & Fractals, 2016, 89: 232-242.
[23] Ran D C, Chen X Q, Misra A K. Finite time coordinated formation control for spacecraft formation flying under directed communication topology[J]. Acta Astronautica, 2017, 136: 125-136.
[24] Wang B Y, Han Y, Wang S Y, et al. A review of intelligent connected vehicle cooperative driving development[J]. Mathematics, 2022, 10(19): 3635.
[25] Zhu M, Wen Y Q. Design and analysis of collaborative unmanned surface-aerial vehicle cruise systems[J]. Journal of Advanced Transportation, 2019, 2019: 1-10.
[26] Doran H D, Reif M, Oehler M, et al. Conceptual design of human-drone communication in collaborative environments[C]//2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). Piscataway: IEEE, 2020: 118-121.
[27] Gualtieri L, Rauch E, Vidoni R. Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 101998
[28] Giri P. Collaborative geographic area surveillance by system of drones[C]//2022 23rd IEEE International Conference on Mobile Data Management (MDM). Piscataway: IEEE, 2022: 340-342.
[29] Sun T Y, Sun W, Wu J J. Cooperative search of UAV formation guided by probability graph[C]//Pan J S, Meng Z, Li J, et al. Advances in intelligent information hiding and multimedia Signal Processing. Singapore: Springer, 2022: 33-41.
[30] Sutton R S, Barto A G. Reinforcement learning: An introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054.
[31] Abdul Hamid N, Mohd Nawi N, Ghazali R, et al. Accelerating Learning performance of back propagation algorithm by using adaptive gain together with adaptive momentum and adaptive learning rate on classification problems[C]//Kim T V H, Adeli H, Robles R J, et al. International Conference on Ubiquitous Computing and Multimedia Applications. Berlin, Heidelberg: Springer, 2011: 559-570.
文章导航

/