基于车-车通信的新型列控系统,通过等距离间隔、等时间间隔和变时距3种控制策略实现高效率的列车追踪控制。由于在车队控制中,领航车的控制具有随机性,如何保证不同控制策略中车队的稳定性至关重要。提出了一种基于随机价格时间博弈理论(stochastic priced timed game,SPTG)的车-车通信控制策略建模与验证方法。首先,针对不同控制策略要求,利用随机价格时间自动机,建立包含领航车和跟随车的车队控制模型,并进行稳定性验证;然后,以时间为成本函数,通过对建立车队随机价格时间博弈自动机模型,利用Q-learning强化学习方法得到车队的最优驾驶策略;最后,结合多车运行追踪场景,进行车队的稳定性仿真优化。结果表明:相比于车队的随机运行策略,该方法使得车队的稳定误差更小。
Next generation train control system(NGTC)based on Train-Train communication realizes highly efficient train tracking control through three control strategies of constant spacing, constant time interval, and dynamic headway. Since the leader train control is random in the platoon control, how to ensure the safety of the platoon in different control strategies is very important. This paper proposes a Train-Train communication control strategy modeling and verification method based on stochastic priced timed game(SPTG). Firstly, according to the requirements of different control strategies, a platoon control model including a leader train and follower trains is established by using SPTG automata, and the stability is verified. Secondly, taking time as the cost function, Q-learning is used to obtain the optimal driving strategy of the platoon through the platoon's SPTG automata model. Finally, combined with multi-train operation tracking scenarios, the stability simulation optimization of the platoon is carried out. The result shows that the stability error of the platoon is smaller than that of the random operation of the platoon.
[1] 郜春海 . 基于通信的列车运行控制(CBTC)系统[M]. 北京: 中国铁道出版社, 2018: 40-95.
[2] Zhu L, Yao D Y, Zhao H L. Reliability analysis of next-generation CBTC data communication systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2024-2034.
[3] Chen K H, Lv J D, Luo Z W, et al. Complete testing for speed monitoring function of next-generation train control system based on IPOG strategy[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Piscataway: IEEE Press, 2019: 3633-3638.
[4] Yu F R. Advances in communications-based train control systems[M]. New York: CRC Press, 2015.
[5] 赵磊, 何春明. 美国PTC系统和欧洲ERTMS的差异分析[J]. 铁道通信信号, 2011, 47(11): 56-59.
[6] Lindsey R. Positive train control in North America[J]. IEEE Vehicular Technology Magazine, 2009, 4(4): 22-26.
[7] Lei L, Lu J H, Jiang Y M, et al. Stochastic delay analysis for train control services in next-generation high-speed railway communications system[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 48-64.
[8] Raupp G, Behler K, Cole R, et al. Next generation discharge control system for ASDEX upgrade[J]. Fusion Engineering and Design, 1999, 46(2-4): 347-354.
[9] Gurník P. Next generation train control (NGTC): More effective railways through the convergence of main-line and urban train control systems[J]. Transportation Research Procedia, 2016, 14: 1855-1864.
[10] Hai X S, Wang Z L, Feng Q, et al. A novel adaptive pigeon-inspired optimization algorithm based on evolutionary game theory[J]. Science China Information Sciences, 2021, 64(3): 139203.
[11] Abdoos M. A cooperative multiagent system for traffic signal control using game theory and reinforcement learning[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 13(4): 6-16.
[12] 姜启源, 谢金星, 叶俊 . 数学模型[M]. 4版 . 北京: 高等教育出版社, 2011: 373-410.
[13] Rashid A, Siddique U, Hasan O. Formal verification of platoon control strategies[C]//Johnsen E, Schaefer I. International Conference on Software Engineering and Formal Methods. Cham: Springer, 2018: 223-238.
[14] 吕继东 . 列车运行控制系统分层形式化建模与验证分析[D]. 北京: 北京交通大学, 2011.
[15] 张锦坤, 杨孟飞, 乔磊, 等 . 基于有限状态机的操作系统需求层形式化验证[J]. 空间控制技术与应用, 2019, 45(2): 48-55.
[16] David A, Jensen P G, Larsen K G, et al. On time with minimal expected cost! [M]//Automated Technology for Verification and Analysis. Cham: Springer International Publishing, 2014: 129-145.
[17] Christopher J C H. Q-learning [J]. Machine Learning, 1992, 8(3-4): 279-292.
[18] 曹源, 唐涛, 徐田华, 等 . 形式化方法在列车运行控制系统中的应用[J]. 交通运输工程学报, 2010, 10(1): 112-126.
[19] Peng G H, Sun D H. A dynamical model of car-following with the consideration of the multiple information of preceding cars[J]. Physics Letters A, 2010, 374(15-16): 1694-1698.
[20] Jiang R, Hu M B, Zhang H M, et al. On some experimental features of car-following behavior and how to model them[J]. Transportation Research Part B: Methodological, 2015, 80: 338-354.
[21] 王鹏, 李开成, 刘雨. 车车通信技术在列控系统中的应用研究[J]. 铁道通信信号, 2016, 52(7): 62-65, 70.
[22] Dong H R, Gao S G, Ning B. Cooperative control synthesis and stability analysis of multiple trains under moving signaling systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2730-2738.
[23] Alur R, Dill D L. A theory of timed automata[J]. Theoretical Computer Science, 1994, 126(2): 183-235.
[24] Behrmann G, Fehnker A, Hune T, et al. Minimum-cost reachability for priced time automata[M]//Hybrid Systems: Computation and Control. Berlin, Heidelberg: Springer, 2001: 147-161.
[25] David A, Jensen P G, Larsen K G, et al. Uppaal stratego[C]//Baier C, Tinelli C. TACAS 2015: Tools and Algorithms for the Construction and Analysis of Systems. Berlin: Springer, 2015: 206-211.
[26] Wognsen E R, Haverkort B R, Jongerden M, et al. A score function for optimizing the cycle-life of battery-powered embedded systems[C]//International Conference on Formal Modeling and Analysis of Timed Systems. Berlin: Springer, 2015:305-320.
[27] Larsen K G, Mikuionis M, Taankvist J H. Safe and optimal adaptive cruise control[M]//Meyer R, Platzer A, Wehrheim H. Correct System Design. Cham: Springer, 2015: 260-277.